Skip to content
Snippets Groups Projects
Commit c65408da authored by pqiao29's avatar pqiao29
Browse files

clean up initialize.FUN

parent 01f9c99c
No related branches found
No related tags found
No related merge requests found
## Churches' original function
## internal in sirplus
initialize.icm <- function(param, init, control, seed = NULL) {
if(!is.null(seed)) set.seed(seed)
## Master List for Data ##
dat <- list()
dat$param <- param
dat$init <- init
dat$control <- control
# Set attributes
dat$attr <- list()
numeric.init <- init[which(sapply(init, class) == "numeric")]
n <- do.call("sum", numeric.init)
dat$attr$active <- rep(1, n)
if (dat$param$groups == 1) {
dat$attr$group <- rep(1, n)
} else {
g2inits <- grep(".g2", names(numeric.init))
g1inits <- setdiff(1:length(numeric.init), g2inits)
nG1 <- sum(sapply(g1inits, function(x) init[[x]]))
nG2 <- sum(sapply(g2inits, function(x) init[[x]]))
dat$attr$group <- c(rep(1, nG1), rep(2, max(0, nG2)))
}
# Initialize status and infection time
dat <- init_status.icm(dat)
# Summary out list
dat <- get_prev.icm(dat, at = 1)
return(dat)
}
init_status.icm <- function(dat) {
# Variables ---------------------------------------------------------------
type <- dat$control$type
group <- dat$attr$group
nGroups <- dat$param$groups
nG1 <- sum(group == 1)
nG2 <- sum(group == 2)
e.num <- dat$init$e.num
i.num <- dat$init$i.num
q.num <- dat$init$q.num
h.num <- dat$init$h.num
r.num <- dat$init$r.num
f.num <- dat$init$f.num
e.num.g2 <- dat$init$e.num.g2
i.num.g2 <- dat$init$i.num.g2
q.num.g2 <- dat$init$q.num.g2
h.num.g2 <- dat$init$h.num.g2
r.num.g2 <- dat$init$r.num.g2
f.num.g2 <- dat$init$f.num.g2
# Status ------------------------------------------------------------------
status <- rep("s", nG1 + nG2)
status[sample(which(group == 1), size = i.num)] <- "i"
if (nGroups == 2) {
status[sample(which(group == 2), size = i.num.g2)] <- "i"
}
if (type %in% c("SIR", "SEIR", "SEIQHR", "SEIQHRF")) {
status[sample(which(group == 1 & status == "s"), size = r.num)] <- "r"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = r.num.g2)] <- "r"
}
}
if (type %in% c("SEIR", "SEIQHR", "SEIQHRF")) {
status[sample(which(group == 1 & status == "s"), size = e.num)] <- "e"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = e.num.g2)] <- "e"
}
}
if (type %in% c("SEIQHR", "SEIQHRF")) {
status[sample(which(group == 1 & status == "s"), size = q.num)] <- "q"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = q.num.g2)] <- "q"
}
status[sample(which(group == 1 & status == "s"), size = h.num)] <- "h"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = h.num.g2)] <- "h"
}
}
if (type %in% c("SEIQHRF")) {
status[sample(which(group == 1 & status == "s"), size = f.num)] <- "f"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = f.num.g2)] <- "f"
}
}
dat$attr$status <- status
# Exposure Time ----------------------------------------------------------
idsExp <- which(status == "e")
expTime <- rep(NA, length(status))
# leave exposure time uninitialised for now, and
# just set to NA at start.
dat$attr$expTime <- expTime
# Infection Time ----------------------------------------------------------
idsInf <- which(status == "i")
infTime <- rep(NA, length(status))
dat$attr$infTime <- infTime # overwritten below
# Recovery Time ----------------------------------------------------------
idsRecov <- which(status == "r")
recovTime <- rep(NA, length(status))
dat$attr$recovTime <- recovTime
# Need for Hospitalisation Time ----------------------------------------------------------
idsHosp <- which(status == "h")
hospTime <- rep(NA, length(status))
dat$attr$hospTime <- hospTime
# Quarantine Time ----------------------------------------------------------
idsQuar <- which(status == "q")
quarTime <- rep(NA, length(status))
dat$attr$quarTime <- quarTime
# Hospital-need cessation Time ----------------------------------------------------------
dischTime <- rep(NA, length(status))
dat$attr$dischTime <- dischTime
# Case-fatality Time ----------------------------------------------------------
fatTime <- rep(NA, length(status))
dat$attr$fatTime <- fatTime
# If vital=TRUE, infTime is a uniform draw over the duration of infection
# note the initial infections may have negative infTime!
if (FALSE) {
# not sure what the following section is trying to do, but it
# mucks up the gamma-distributed incumabtion periods, so set
# infTime for initial infected people to t=1 instead
if (dat$param$vital == TRUE && dat$param$di.rate > 0) {
infTime[idsInf] <- -rgeom(n = length(idsInf), prob = dat$param$di.rate) + 2
} else {
if (dat$control$type == "SI" || dat$param$rec.rate == 0) {
# infTime a uniform draw over the number of sim time steps
infTime[idsInf] <- ssample(1:(-dat$control$nsteps + 2),
length(idsInf), replace = TRUE)
} else {
if (nGroups == 1) {
infTime[idsInf] <- ssample(1:(-round(1 / dat$param$rec.rate) + 2),
length(idsInf), replace = TRUE)
}
if (nGroups == 2) {
infG1 <- which(status == "i" & group == 1)
infTime[infG1] <- ssample(1:(-round(1 / dat$param$rec.rate) + 2),
length(infG1), replace = TRUE)
infG2 <- which(status == "i" & group == 2)
infTime[infG2] <- ssample(1:(-round(1 / dat$param$rec.rate.g2) + 2),
length(infG2), replace = TRUE)
}
}
}
}
infTime[idsInf] <- 1
dat$attr$infTime <- infTime
return(dat)
}
\ No newline at end of file
......@@ -4,41 +4,33 @@
#'
#' @param param ICM parameters.
#' @param init Initial value parameters.
#' @param control Control parameters.
#' @param control Control parameters
#' @param seed random seed for checking consistency with other versions.
#'
#' @return Updated dat
#' @export
initialize.FUN <- function(param, init, control) {
initialize.FUN <- function(param, init, control, seed = NULL) {
if(!is.null(seed)) set.seed(seed)
## Master List for Data ##
dat <- list()
dat$param <- param
dat$init <- init
dat$control <- control
# Set attributes
dat$attr <- list()
numeric.init <- init[which(sapply(init, class) == "numeric")]
n <- do.call("sum", numeric.init)
dat$attr$active <- rep(1, n)
if (dat$param$groups == 1) {
dat$attr$group <- rep(1, n)
} else {
g2inits <- grep(".g2", names(numeric.init))
g1inits <- setdiff(1:length(numeric.init), g2inits)
nG1 <- sum(sapply(g1inits, function(x) init[[x]]))
nG2 <- sum(sapply(g2inits, function(x) init[[x]]))
dat$attr$group <- c(rep(1, nG1), rep(2, max(0, nG2)))
}
dat$attr$group <- rep(1, n)
# Initialize status and infection time
dat <- init_status.icm(dat)
# Summary out list
dat <- get_prev.icm(dat, at = 1)
return(dat)
}
......@@ -53,15 +45,14 @@ initialize.FUN <- function(param, init, control) {
#' @importFrom EpiModel ssample
#' @export
init_status.icm <- function(dat) {
# Variables ---------------------------------------------------------------
type <- dat$control$type
group <- dat$attr$group
nGroups <- dat$param$groups
nG1 <- sum(group == 1)
nG2 <- sum(group == 2)
nG <- sum(group == 1)
e.num <- dat$init$e.num
i.num <- dat$init$i.num
q.num <- dat$init$q.num
......@@ -74,111 +65,52 @@ init_status.icm <- function(dat) {
h.num.g2 <- dat$init$h.num.g2
r.num.g2 <- dat$init$r.num.g2
f.num.g2 <- dat$init$f.num.g2
# Status ------------------------------------------------------------------
status <- rep("s", nG1 + nG2)
status <- rep("s", nG)
status[sample(which(group == 1), size = i.num)] <- "i"
if (nGroups == 2) {
status[sample(which(group == 2), size = i.num.g2)] <- "i"
}
if (type %in% c("SIR", "SEIR", "SEIQHR", "SEIQHRF")) {
status[sample(which(group == 1 & status == "s"), size = r.num)] <- "r"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = r.num.g2)] <- "r"
}
}
if (type %in% c("SEIR", "SEIQHR", "SEIQHRF")) {
status[sample(which(group == 1 & status == "s"), size = e.num)] <- "e"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = e.num.g2)] <- "e"
}
}
if (type %in% c("SEIQHR", "SEIQHRF")) {
status[sample(which(group == 1 & status == "s"), size = q.num)] <- "q"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = q.num.g2)] <- "q"
}
status[sample(which(group == 1 & status == "s"), size = h.num)] <- "h"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = h.num.g2)] <- "h"
}
}
if (type %in% c("SEIQHRF")) {
status[sample(which(group == 1 & status == "s"), size = f.num)] <- "f"
if (nGroups == 2) {
status[sample(which(group == 2 & status == "s"), size = f.num.g2)] <- "f"
}
}
dat$attr$status <- status
# Exposure Time ----------------------------------------------------------
idsExp <- which(status == "e")
expTime <- rep(NA, length(status))
n <- length(status)
# leave exposure time uninitialised for now, and
# just set to NA at start.
dat$attr$expTime <- expTime
# Exposure Time ----------------------------------------------------------
dat$attr$expTime <- rep(NA, n)
# Infection Time ----------------------------------------------------------
idsInf <- which(status == "i")
infTime <- rep(NA, length(status))
dat$attr$infTime <- infTime # overwritten below
# Recovery Time ----------------------------------------------------------
idsRecov <- which(status == "r")
recovTime <- rep(NA, length(status))
dat$attr$recovTime <- recovTime
# Need for Hospitalisation Time ----------------------------------------------------------
idsHosp <- which(status == "h")
hospTime <- rep(NA, length(status))
dat$attr$hospTime <- hospTime
# Quarantine Time ----------------------------------------------------------
idsQuar <- which(status == "q")
quarTime <- rep(NA, length(status))
dat$attr$quarTime <- quarTime
# Hospital-need cessation Time ----------------------------------------------------------
dischTime <- rep(NA, length(status))
dat$attr$dischTime <- dischTime
# Case-fatality Time ----------------------------------------------------------
fatTime <- rep(NA, length(status))
dat$attr$fatTime <- fatTime
# If vital=TRUE, infTime is a uniform draw over the duration of infection
# note the initial infections may have negative infTime!
if (FALSE) {
# not sure what the following section is trying to do, but it
# mucks up the gamma-distributed incumabtion periods, so set
# infTime for initial infected people to t=1 instead
if (dat$param$vital == TRUE && dat$param$di.rate > 0) {
infTime[idsInf] <- -rgeom(n = length(idsInf), prob = dat$param$di.rate) + 2
} else {
if (dat$control$type == "SI" || dat$param$rec.rate == 0) {
# infTime a uniform draw over the number of sim time steps
infTime[idsInf] <- ssample(1:(-dat$control$nsteps + 2),
length(idsInf), replace = TRUE)
} else {
if (nGroups == 1) {
infTime[idsInf] <- ssample(1:(-round(1 / dat$param$rec.rate) + 2),
length(idsInf), replace = TRUE)
}
if (nGroups == 2) {
infG1 <- which(status == "i" & group == 1)
infTime[infG1] <- ssample(1:(-round(1 / dat$param$rec.rate) + 2),
length(infG1), replace = TRUE)
infG2 <- which(status == "i" & group == 2)
infTime[infG2] <- ssample(1:(-round(1 / dat$param$rec.rate.g2) + 2),
length(infG2), replace = TRUE)
}
}
}
}
infTime[idsInf] <- 1
infTime <- rep(NA, n)
infTime[status == "i"] <- 1
dat$attr$infTime <- infTime
# Recovery Time ----------------------------------------------------------
dat$attr$recovTime <- rep(NA, n)
# Need for Hospitalisation Time ----------------------------------------------------------
dat$attr$hospTime <- rep(NA, n)
# Quarantine Time ----------------------------------------------------------
dat$attr$quarTime <- rep(NA, n)
# Hospital-need cessation Time ----------------------------------------------------------
dat$attr$dischTime <- rep(NA, n)
# Case-fatality Time ----------------------------------------------------------
dat$attr$fatTime <- rep(NA, n)
return(dat)
}
......@@ -4,14 +4,16 @@
\alias{initialize.FUN}
\title{Initialize ICM}
\usage{
initialize.FUN(param, init, control)
initialize.FUN(param, init, control, seed = NULL)
}
\arguments{
\item{param}{ICM parameters.}
\item{init}{Initial value parameters.}
\item{control}{Control parameters.}
\item{control}{Control parameters}
\item{seed}{random seed for checking consistency with other versions.}
}
\value{
Updated dat
......
test_that("Identical output as Churches' original function: initialize.FUN", {
full_params <- set_param()
control <- full_params$control
param <- full_params$param
init <- full_params$init
No_seeds <- 10
seed_list <- sample(1:1000, No_seeds)
comp <- rep(NA, No_seeds)
i <- 1
for(seed in seed_list){
dat1 <- do.call(initialize.icm, list(param, init, control, seed))
dat2 <- do.call(initialize.FUN, list(param, init, control, seed))
comp[i] <- identical(dat1, dat2)
i <- i + 1
rm(.Random.seed)
}
expect_equal(sum(comp), No_seeds)
})
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment