Skip to content
Snippets Groups Projects
Commit a2008a33 authored by Luke Zappia's avatar Luke Zappia
Browse files

Add simDropout function

parent 99aa8b08
No related branches found
No related tags found
No related merge requests found
Package: splatter
Type: Package
Title: Simple Simulation of Single-cell RNA Sequencing Data
Version: 0.3.8
Version: 0.3.9
Date: 2016-10-10
Author: Luke Zappia
Authors@R: as.person(c(
......
......@@ -3,12 +3,12 @@
# Groups x
# Paths
# Lib size x
# Base Means
# BCV
# Means
# Counts
# Dropout
# Add metadata
# Base Means X
# BCV X
# Means X
# Counts X
# Dropout *********
# Add metadata X
#
# Add length
# Median outliers
......@@ -75,6 +75,7 @@ splat <- function(params = defaultParams(), method = c("groups", "paths"),
sim <- simGroupCellMeans(sim, params)
sim <- simBCVMeans(sim, params)
sim <- simTrueCounts(sim, params)
sim <- simDropout(sim, params)
# Create new SCESet to make sure values are calculated correctly
sce <- newSCESet(countData = counts(sim),
......@@ -216,6 +217,49 @@ simTrueCounts <- function(sim, params) {
return(sim)
}
simDropout <- function(sim, params) {
dropout.present <- getParams(params, "dropout.present")
true.counts <- assayData(sim)$TrueCounts
if (dropout.present) {
n.cells <- getParams(params, "nCells")
n.genes <- getParams(params, "nGenes")
dropout.mid <- getParams(params, "dropout.mid")
dropout.shape <- getParams(params, "dropout.shape")
cell.names <- pData(sim)$Cell
gene.names <- fData(sim)$Gene
cell.means <- assayData(sim)$CellMeans
lib.sizes <- colSums(true.counts)
cell.facs <- log(lib.sizes) / median(lib.sizes)
drop.prob <- sapply(1:n.cells, function(idx) {
eta <- cell.facs[idx] * (log(cell.means[, idx]))
return(logistic(eta, x0 = dropout.mid, k = dropout.shape))
})
keep <- matrix(rbinom(n.cells * n.genes, 1, 1 - drop.prob),
nrow = n.genes, ncol = n.cells)
counts <- true.counts * keep
colnames(drop.prob) <- cell.names
rownames(drop.prob) <- gene.names
colnames(keep) <- cell.names
rownames(keep) <- gene.names
assayData(sim)$DropProb <- drop.prob
assayData(sim)$Dropout <- !keep
} else {
counts <- true.counts
}
counts(sim) <- counts
return(sim)
}
#' Get log-normal factors
#'
#' Randomly generate multiplication factors from a log-normal distribution.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment