Skip to content
Snippets Groups Projects
Commit 66b7cc82 authored by Luke Zappia's avatar Luke Zappia
Browse files

Remove references to SCESets

parent ffb9e9a7
No related branches found
No related tags found
No related merge requests found
# Generated by roxygen2: do not edit by hand
S3method(BASiCSEstimate,SCESet)
S3method(BASiCSEstimate,SingleCellExperiment)
S3method(BASiCSEstimate,matrix)
S3method(lun2Estimate,SingleCellExperiment)
S3method(lun2Estimate,matrix)
......
......@@ -2,8 +2,8 @@
#'
#' Estimate simulation parameters for the BASiCS simulation from a real dataset.
#'
#' @param counts either a counts matrix or an SCESet object containing count
#' data to estimate parameters from.
#' @param counts either a counts matrix or a SingleCellExperiment object
#' containing count data to estimate parameters from.
#' @param spike.info data.frame describing spike-ins with two columns: "Name"
#' giving the names of the spike-in features (must match
#' \code{rownames(counts)}) and "Input" giving the number of input
......@@ -52,10 +52,12 @@ BASiCSEstimate <- function(counts, spike.info = NULL, batch = NULL,
#' @rdname BASiCSEstimate
#' @export
BASiCSEstimate.SCESet <- function(counts, spike.info = NULL, batch = NULL,
n = 20000, thin = 10, burn = 5000,
params = newBASiCSParams(), verbose = TRUE,
progress = TRUE, ...) {
BASiCSEstimate.SingleCellExperiment <- function(counts, spike.info = NULL,
batch = NULL, n = 20000,
thin = 10, burn = 5000,
params = newBASiCSParams(),
verbose = TRUE, progress = TRUE,
...) {
counts <- BiocGenerics::counts(counts)
BASiCSEstimate(counts, params)
}
......
......@@ -10,8 +10,8 @@
#' @details
#' This function is just a wrapper around \code{\link[BASiCS]{BASiCS_Sim}} that
#' takes a \code{\link{BASiCSParams}}, runs the simulation then converts the
#' output to an \code{\link[scater]{SCESet}} object. See
#' \code{\link[BASiCS]{BASiCS_Sim}} for more details of how the simulation
#' output to a \code{\link[SingleCellExperiment]{SingleCellExperiment}} object.
#' See \code{\link[BASiCS]{BASiCS_Sim}} for more details of how the simulation
#' works.
#'
#' @return SingleCellExperiment containing simulated counts
......
......@@ -297,7 +297,7 @@ diffSCEs <- function(sces, ref, point.size = 0.1, point.alpha = 0.1,
for (name in names(sces)) {
sce <- sces[[name]]
if (!identical(dim(sce), ref.dim)) {
stop("SCESets must have the same dimensions")
stop("all datasets in 'sces' must have the same dimensions")
}
rowData(sce)$Dataset <- name
colData(sce)$Dataset <- name
......@@ -717,8 +717,8 @@ makeDiffPanel <- function(diff, title = "Difference comparison",
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compSCESets(list(Splat = sim1, Simple = sim2))
#' difference <- diffSCESets(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' comparison <- compSCEs(list(Splat = sim1, Simple = sim2))
#' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' panel <- makeOverallPanel(comparison, difference)
#' }
#'
......
......@@ -16,8 +16,8 @@ data. Splatter provides a common interface to multiple simulations that have:
* Functions for comparing simulations and real datasets
Splatter is built on top of [`scater`][scater] and stores simulations in
`SCESet` objects. Splatter also has functions for comparing simulations and real
datasets.
[`SingleCellExperiment`][SCE] objects. Splatter also has functions for comparing
simulations and real datasets.
**!Please note!** This site provides documentation for the development version
of Splatter. For details on the current release please refer to
......@@ -45,7 +45,7 @@ biocLite("splatter", build_vignettes=TRUE)
```
This will also build the vignette and install all suggested dependencies (which
aren't required for core functionality). Building the vignette may sometimes
aren't required for core functionality). Building the vignette may sometimes
fail when run from the command line, if this happens try running the install
command in RStudio.
......@@ -73,6 +73,7 @@ devtools::install("Oshlack/splatter")
```
[scater]: https://github.com/davismcc/scater
[SCE]: https://github.com/drisso/SingleCellExperiment
[bioc]: https://bioconductor.org/packages/splatter
[devel]: https://bioconductor.org/packages/devel/bioc/html/splatter.html
[bioc-install]: https://www.bioconductor.org/developers/how-to/useDevel/
......
......@@ -2,7 +2,7 @@
% Please edit documentation in R/BASiCS-estimate.R
\name{BASiCSEstimate}
\alias{BASiCSEstimate}
\alias{BASiCSEstimate.SCESet}
\alias{BASiCSEstimate.SingleCellExperiment}
\alias{BASiCSEstimate.matrix}
\title{Estimate BASiCS simulation parameters}
\usage{
......@@ -10,17 +10,17 @@ BASiCSEstimate(counts, spike.info = NULL, batch = NULL, n = 20000,
thin = 10, burn = 5000, params = newBASiCSParams(), verbose = TRUE,
progress = TRUE, ...)
\method{BASiCSEstimate}{SCESet}(counts, spike.info = NULL, batch = NULL,
n = 20000, thin = 10, burn = 5000, params = newBASiCSParams(),
verbose = TRUE, progress = TRUE, ...)
\method{BASiCSEstimate}{SingleCellExperiment}(counts, spike.info = NULL,
batch = NULL, n = 20000, thin = 10, burn = 5000,
params = newBASiCSParams(), verbose = TRUE, progress = TRUE, ...)
\method{BASiCSEstimate}{matrix}(counts, spike.info = NULL, batch = NULL,
n = 20000, thin = 10, burn = 5000, params = newBASiCSParams(),
verbose = TRUE, progress = TRUE, ...)
}
\arguments{
\item{counts}{either a counts matrix or an SCESet object containing count
data to estimate parameters from.}
\item{counts}{either a counts matrix or a SingleCellExperiment object
containing count data to estimate parameters from.}
\item{spike.info}{data.frame describing spike-ins with two columns: "Name"
giving the names of the spike-in features (must match
......
......@@ -23,8 +23,8 @@ Simulate counts using the BASiCS method.
\details{
This function is just a wrapper around \code{\link[BASiCS]{BASiCS_Sim}} that
takes a \code{\link{BASiCSParams}}, runs the simulation then converts the
output to an \code{\link[scater]{SCESet}} object. See
\code{\link[BASiCS]{BASiCS_Sim}} for more details of how the simulation
output to a \code{\link[SingleCellExperiment]{SingleCellExperiment}} object.
See \code{\link[BASiCS]{BASiCS_Sim}} for more details of how the simulation
works.
}
\examples{
......
......@@ -29,8 +29,8 @@ single panel.
\dontrun{
sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
comparison <- compSCESets(list(Splat = sim1, Simple = sim2))
difference <- diffSCESets(list(Splat = sim1, Simple = sim2), ref = "Simple")
comparison <- compSCEs(list(Splat = sim1, Simple = sim2))
difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
panel <- makeOverallPanel(comparison, difference)
}
......
context("SCESet functions")
context("SCE functions")
test_that("addGeneLengths generate method works", {
sce <- simpleSimulate()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment