Skip to content
Snippets Groups Projects
Commit 42e81066 authored by Christina Azodi's avatar Christina Azodi
Browse files

added eQTL functions to manual section

parent 6913b86b
No related branches found
No related tags found
No related merge requests found
......@@ -14,7 +14,6 @@ splateQTL(
eqtl.dist = 1e+06,
eqtl.maf = 0.1,
eqtl.mafd = 0.01,
eqtl.bcv = 0.4,
eqtl.save = TRUE,
...
)
......@@ -23,7 +22,7 @@ splateQTL(
\item{params}{SplatParams object containing parameters for the simulation.
See \code{\link{SplatParams}} for details.}
\item{gff_file}{Path to a GFF/GFT file containing genes to include.}
\item{gff_file}{Path to a GFF/GTF file containing genes to include.}
\item{snp_file}{Path to real/simulated genotype data in .vcf format.
Where each column is a sample and each row is a SNP.}
......@@ -42,8 +41,6 @@ GTEx thyroid cis-eQTL data)}
\item{eqtl.mafd}{Maximum variation from eqtl.maf to include as eSNP}
\item{eqtl.bcv}{Biological Coefficient of Variation (default = 0.4)}
\item{eqtl.save}{logical. Whether to save eQTL key and mean matrix.}
\item{...}{any additional parameter settings to override what is provided in
......@@ -56,8 +53,8 @@ intermediate values.
}
\description{
Simulate mean gene counts for a population of samples, such that a defined
number of associations (i.e. cis-eQTL) between markers (i.e. eSNPs) and genes
(i.e. eGenes) exist.
number of associations (cis-eQTL) between markers (eSNPs) and genes
(eGenes) exist.
}
\details{
Parameters can be set in a variety of ways. If no parameters are provided
......@@ -75,7 +72,7 @@ The eQTL Gene Mean simulation involves the following steps:
\item Generate normalized gene mean expression matrix for the population.
\item Set a gene mean expression value (not normalized) for each gene.
\item Generate a gene mean expression matrix for the population.
\item (optional) Save eQTL key (i.e. pairs)
\item (optional) Save eQTL key (pairs)
}
}
\examples{
......
......@@ -4,10 +4,11 @@
\alias{splateQTLGeneMeans}
\title{Set a gene mean expression value (not normalized) for each gene.}
\usage{
splateQTLGeneMeans(params, pairs, eqtl.bcv)
splateQTLGeneMeans(params, pairs)
}
\arguments{
\item{params}{Output from splateQTL_DefineAssociations}
\item{params}{SplatParams object containing parameters for the simulation.
See \code{\link{SplatParams}} for details.}
\item{pairs}{A dataframe eSNPs-eGenes pair assignments and their effect sizes}
}
......
......@@ -2,24 +2,27 @@
% Please edit documentation in R/splat-eqtl.R
\name{splateQTLMeansMatrix}
\alias{splateQTLMeansMatrix}
\title{Un-normalize the mean gene expression matrix}
\title{Project normalized gene expression matrix into mean gene expression matrix}
\usage{
splateQTLMeansMatrix(pairs, nMeans)
splateQTLMeansMatrix(params, pairs, nMeans)
}
\arguments{
\item{nMeans}{The normalized gene expression means for the population}
\item{params}{SplatParams object containing parameters for the simulation.
See \code{\link{SplatParams}} for details.}
\item{pairs}{A dataframe eSNPs-eGenes pair assignments and their effect sizes}
\item{params}{A dataframe eSNPs-eGenes pair assignments and their effect sizes}
\item{nMeans}{The normalized gene expression means for the population}
}
\value{
MeansMatrix: Matrix of simulated gene means for eQTL population.
}
\description{
Un-normalize the mean gene expression matrix
Project normalized gene expression matrix into mean gene expression matrix
}
\details{
For each gene/sample, the normalized expression value (from rnorm) is
transformed to the cumulative density function (pnorm) between 0 and 1, this
value is then inversed (qnorm) to map the probability to a value defined by
the gene mean assigned in splateQTLGeneMeans.
value is then quantile normalized (qgamma) using the gamma distribution
parameterized from splatEstimate().
}
......@@ -13,7 +13,7 @@ splateQTLgenes(gff_file)
A dataframe containing gene IDs and locations.
}
\description{
Read in GFF/GTF file (ignorning header) and select only sequences where the
Read in GFF/GTF file (ignoring header) and select only sequences where the
feature is listed as a gene. Then get the Transcriptional Start Site for
each gene (depending on strand direction).
}
......@@ -27,6 +27,6 @@ A dataframe eSNPs-eGenes pair assignments and their effect sizes
\description{
Randomly pairs N eSNPs with an eGene within the designated window size
(eqtl.dist) and assigns each pair an effect size sampled from a gamma
distribution parameterized using the effect sizes from a builk eQTL study
distribution parameterized using the effect sizes from a bulk eQTL study
using the GTEx data from the thyroid tissue.
}
......@@ -7,7 +7,7 @@
splateQTLsnps(snp_file, eqtl.maf, eqtl.mafd)
}
\arguments{
\item{snp_file}{Path to real/simulated genotype data in .ped.gen format}
\item{snp_file}{Path to real/simulated genotype data (.vcf)}
\item{eqtl.maf}{Desired Minor Allele Frequency (MAF) of eSNPs to include}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment