Skip to content
Snippets Groups Projects
Commit 0188e6fe authored by l.zappia's avatar l.zappia
Browse files

Merge branch 'master' into devel

* master: (123 commits)
  Fix non-linear path factors
  Bump verison number
  Set some examples to not run to save check time
  Initalise scDatEx to avoid NOTE
  Tidy up and bump version
  Replace 1:x
  Remove splatter.Rproj
  Add more detail about counts matrix
  Add installation to vignette
  Set R_TESTS environment
  Bump version to start build
  splatter 0.99.3
  Updata scDDEstimate
  Add condition parameter
  Modify SCDDParams to take SummarizedExperiment
  Add logo to vignettes directory
  Remove scDD github remote
  Update to R-devel
  Address Bioconductor build warnings, notes
  Prepare for Bioconductor submission
  ...

From: Luke Zappia <lazappi@users.noreply.github.com>

git-svn-id: https://hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/splatter@126081 bc3139a8-67e5-0310-9ffc-ced21a209358
parent 070784c4
No related branches found
No related tags found
No related merge requests found
Package: splatter
Type: Package
Title: Simple Simulation of Single-cell RNA Sequencing Data
Version: 0.99.7
Date: 2016-12-29
Version: 0.99.8
Date: 2017-01-23
Author: Luke Zappia
Authors@R: c(person("Luke", "Zappia", role = c("aut", "cre"), email =
"luke.zappia@mcri.edu.au"), person("Belinda", "Phipson", role =
c("aut"), email = "belinda.phipson@mcri.edu.au"),
person("Alicia", "Oshlack", role = c("aut"), email =
"alicia.oshlack@mcri.edu.au"))
Authors@R:
c(person("Luke", "Zappia", role = c("aut", "cre"),
email = "luke.zappia@mcri.edu.au"),
person("Belinda", "Phipson", role = c("aut"),
email = "belinda.phipson@mcri.edu.au"),
person("Alicia", "Oshlack", role = c("aut"),
email = "alicia.oshlack@mcri.edu.au"))
Maintainer: Luke Zappia <luke.zappia@mcri.edu.au>
Description: Splatter is a package for the simulation of single-cell
RNA sequencing count data. It provides a simple interface for
creating complex simulations that are reproducible and
well-documented.
Description: Splatter is a package for the simulation of single-cell RNA
sequencing count data. It provides a simple interface for creating complex
simulations that are reproducible and well-documented.
License: GPL-3 + file LICENSE
LazyData: TRUE
Depends: R (>= 3.4), scater
Imports: fitdistrplus, edgeR, stats, locfit, akima, Biobase, checkmate,
methods, utils, matrixStats, ggplot2, scales
Suggests: testthat, scran, progress, lme4, pscl, scDD, knitr,
rmarkdown, BiocStyle, covr, S4Vectors, SummarizedExperiment
biocViews: SingleCell, RNASeq, Transcriptomics, GeneExpression,
Sequencing, Software
Depends:
R (>= 3.4),
scater
Imports:
fitdistrplus,
edgeR,
stats,
locfit,
akima,
Biobase,
checkmate,
methods,
utils,
matrixStats,
ggplot2,
scales
Suggests:
testthat,
scran,
progress,
lme4,
pscl,
scDD,
knitr,
rmarkdown,
BiocStyle,
covr,
S4Vectors,
SummarizedExperiment
biocViews: SingleCell, RNASeq, Transcriptomics, GeneExpression, Sequencing,
Software
URL: https://github.com/Oshlack/splatter
BugReports: https://github.com/Oshlack/splatter/issues
RoxygenNote: 5.0.1
......
# 0.99.8
* Fix bug that meant non-linear path factors weren't stored in output
# 0.99.7
* Small changes to avoid NOTEs and reduce check time
......
......@@ -53,27 +53,29 @@
#' \describe{
#' \item{Gene}{Unique gene identifier.}
#' \item{BaseGeneMean}{The base expression level for that gene.}
#' \item{OutlierFactor}{Expression outlier factor for that gene. Values
#' of 1 indicate the gene is not an expression outlier.}
#' \item{OutlierFactor}{Expression outlier factor for that gene.
#' Values of 1 indicate the gene is not an expression outlier.}
#' \item{GeneMean}{Expression level after applying outlier factors.}
#' \item{DEFac[Group]}{The differential expression factor for each gene
#' in a particular group. Values of 1 indicate the gene is not
#' \item{DEFac[Group]}{The differential expression factor for each
#' gene in a particular group. Values of 1 indicate the gene is not
#' differentially expressed.}
#' \item{GeneMean[Group]}{Expression level of a gene in a particular
#' group after applying differential expression factors.}
#' \item{SigmaFac[Path]}{Factor applied to genes that have
#' non-linear changes in expression along a path.}
#' }
#' }
#' \item{\code{assayData}}{
#' \describe{
#' \item{BaseCellMeans}{The expression of genes in each cell adjusted for
#' expected library size.}
#' \item{BCV}{The Biological Coefficient of Variation for each gene in
#' each cell.}
#' \item{CellMeans}{The expression level of genes in each cell adjusted
#' for BCV.}
#' \item{BaseCellMeans}{The expression of genes in each cell
#' adjusted for expected library size.}
#' \item{BCV}{The Biological Coefficient of Variation for each gene
#' in each cell.}
#' \item{CellMeans}{The expression level of genes in each cell
#' adjusted for BCV.}
#' \item{TrueCounts}{The simulated counts before dropout.}
#' \item{Dropout}{Logical matrix showing which values have been dropped
#' in which cells.}
#' \item{Dropout}{Logical matrix showing which values have been
#' dropped in which cells.}
#' }
#' }
#' }
......@@ -449,6 +451,15 @@ splatSimPathCellMeans <- function(sim, params) {
group.names <- unique(groups)
exp.lib.sizes <- pData(sim)$ExpLibSize
# Generate non-linear path factors
for (idx in seq_along(path.from)) {
# Select genes to follow a non-linear path
is.nonlinear <- as.logical(rbinom(nGenes, 1, path.nonlinearProb))
sigma.facs <- rep(0, nGenes)
sigma.facs[is.nonlinear] <- path.sigmaFac
fData(sim)[[paste0("SigmaFacPath", idx)]] <- sigma.facs
}
# Generate paths. Each path is a matrix with path.length columns and
# nGenes rows where the expression from each genes changes along the path.
path.steps <- lapply(seq_along(path.from), function(idx) {
......@@ -462,16 +473,13 @@ splatSimPathCellMeans <- function(sim, params) {
# Find the means at the end position
means.end <- fData(sim)[[paste0("GeneMeanPath", idx)]]
# Select genes to follow a non-linear path
is.nonlinear <- as.logical(rbinom(nGenes, 1, path.nonlinearProb))
sigma.facs <- rep(0, nGenes)
sigma.facs[is.nonlinear] <- path.sigmaFac
# Get the non-linear factors
sigma.facs <- fData(sim)[[paste0("SigmaFacPath", idx)]]
# Build Brownian bridges from start to end
steps <- buildBridges(means.start, means.end, n = path.length[idx],
sigma.fac = sigma.facs)
fData(sim)[[paste0("SigmaFacPath", idx)]] <- sigma.facs
return(t(steps))
})
......
......@@ -78,27 +78,29 @@ slots. This additional information includes:
\describe{
\item{Gene}{Unique gene identifier.}
\item{BaseGeneMean}{The base expression level for that gene.}
\item{OutlierFactor}{Expression outlier factor for that gene. Values
of 1 indicate the gene is not an expression outlier.}
\item{OutlierFactor}{Expression outlier factor for that gene.
Values of 1 indicate the gene is not an expression outlier.}
\item{GeneMean}{Expression level after applying outlier factors.}
\item{DEFac[Group]}{The differential expression factor for each gene
in a particular group. Values of 1 indicate the gene is not
\item{DEFac[Group]}{The differential expression factor for each
gene in a particular group. Values of 1 indicate the gene is not
differentially expressed.}
\item{GeneMean[Group]}{Expression level of a gene in a particular
group after applying differential expression factors.}
\item{SigmaFac[Path]}{Factor applied to genes that have
non-linear changes in expression along a path.}
}
}
\item{\code{assayData}}{
\describe{
\item{BaseCellMeans}{The expression of genes in each cell adjusted for
expected library size.}
\item{BCV}{The Biological Coefficient of Variation for each gene in
each cell.}
\item{CellMeans}{The expression level of genes in each cell adjusted
for BCV.}
\item{BaseCellMeans}{The expression of genes in each cell
adjusted for expected library size.}
\item{BCV}{The Biological Coefficient of Variation for each gene
in each cell.}
\item{CellMeans}{The expression level of genes in each cell
adjusted for BCV.}
\item{TrueCounts}{The simulated counts before dropout.}
\item{Dropout}{Logical matrix showing which values have been dropped
in which cells.}
\item{Dropout}{Logical matrix showing which values have been
dropped in which cells.}
}
}
}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment