Skip to content
Snippets Groups Projects
SplatParams.Rd 4.45 KiB
Newer Older
Luke Zappia's avatar
Luke Zappia committed
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/AllClasses.R
\docType{class}
\name{SplatParams}
\alias{SplatParams}
\alias{SplatParams-class}
\title{The SplatParams class}
\description{
S4 class that holds parameters for the Splatter simulation.
}
\section{Parameters}{


The Splatter simulation requires the following parameters:

\describe{
  \item{\code{nGenes}}{The number of genes to simulate.}
  \item{\code{nCells}}{The number of cells to simulate.}
Luke Zappia's avatar
Luke Zappia committed
  \item{\code{[nGroups]}}{The number of groups or paths to simulate.}
Luke Zappia's avatar
Luke Zappia committed
  \item{\code{[groupCells]}}{Vector giving the number of cells in each
  simulation group/path.}
  \item{\code{[seed]}}{Seed to use for generating random numbers.}
  \item{\emph{Mean parameters}}{
    \describe{
      \item{\code{mean.shape}}{Shape parameter for the mean gamma
      distribution.}
      \item{\code{mean.rate}}{Rate parameter for the mean gamma
      distribution.}
    }
  }
  \item{\emph{Library size parameters}}{
    \describe{
      \item{\code{lib.loc}}{Location (meanlog) parameter for the library
      size log-normal distribution.}
      \item{\code{lib.scale}}{Scale (sdlog) parameter for the library size
      log-normal distribution.}
    }
  }
  \item{\emph{Expression outlier parameters}}{
    \describe{
      \item{\code{out.prob}}{Probability that a gene is an expression
      outlier.}
      \item{\code{out.loProb}}{Probability that an expression outlier gene
      is lowly expressed.}
      \item{\code{out.facLoc}}{Location (meanlog) parameter for the
      expression outlier factor log-normal distribution.}
      \item{\code{out.facScale}}{Scale (sdlog) parameter for the expression
      outlier factor log-normal distribution.}
    }
  }
  \item{\emph{Differential expression parameters}}{
    \describe{
      \item{\code{[de.prob]}}{Probability that a gene is differentially
      expressed in a group. Can be a vector.}
Luke Zappia's avatar
Luke Zappia committed
      \item{\code{[de.loProb]}}{Probability that a differentially expressed
Luke Zappia's avatar
Luke Zappia committed
      gene is down-regulated. Can be a vector.}
      \item{\code{[de.facLoc]}}{Location (meanlog) parameter for the
      differential expression factor log-normal distribution. Can be a
      vector.}
      \item{\code{[de.facScale]}}{Scale (sdlog) parameter for the
      differential expression factor log-normal distribution. Can be a
      vector.}
    }
  }
  \item{\emph{Biological Coefficient of Variation parameters}}{
    \describe{
      \item{\code{bcv.common}}{Underlying common dispersion across all
      genes.}
      \item{\code{bcv.df}}{Degrees of Freedom for the BCV inverse chi-squared
      distribution.}
    }
  }
  \item{\emph{Dropout parameters}}{
    \describe{
      \item{\code{dropout.present}}{Logical. Whether to simulate dropout.}
      \item{\code{dropout.mid}}{Midpoint parameter for the dropout logistic
      function.}
      \item{\code{dropout.shape}}{Shape parameter for the dropout logistic
      function.}
    }
  }
  \item{\emph{Differentiation path parameters}}{
    \describe{
      \item{\code{[path.from]}}{Vector giving the originating point of each
      path. This allows path structure such as a cell type which
      differentiates into an intermediate cell type that then differentiates
      into two mature cell types. A path structure of this form would have a
      "from" parameter of c(0, 1, 1) (where 0 is the origin). If no vector is
      given all paths will start at the origin.}
      \item{\code{[path.length]}}{Vector giving the number of steps to
      simulate along each path. If a single value is given it will be applied
      to all paths.}
      \item{\code{[path.skew]}}{Vector giving the skew of each path. Values
      closer to 1 will give more cells towards the starting population,
      values closer to 0 will give more cells towards the final population.
      If a single value is given it will be applied to all paths.}
      \item{\code{[path.nonlinearProb]}}{Probability that a gene follows a
      non-linear path along the differentiation path. This allows more
      complex gene patterns such as a gene being equally expressed at the
      beginning an end of a path but lowly expressed in the middle.}
      \item{\code{[path.sigmaFac]}}{Sigma factor for non-linear gene paths.
      A higher value will result in more extreme non-linear variations along
      a path.}
    }
  }
}

The parameters not shown in brackets can be estimated from real data using
\code{\link{splatEstimate}}. For details of the Splatter simulation
Luke Zappia's avatar
Luke Zappia committed
see \code{\link{splatSimulate}}.
}