Newer
Older
#' Simple simulation
#'
#' Simulate counts from a simple negative binomial distribution without
#' simulated library sizes, differential expression etc.
#'
#' @param params SimpleParams object containing simulation parameters.
#' @param verbose logical. Whether to print progress messages
#' @param ... any additional parameter settings to override what is provided in
#' \code{params}.
#'
#' @details
#' Gene means are simulated from a gamma distribution with
#' \code{shape = mean.shape} and \code{rate = mean.rate}. Counts are then
#' simulated from a negative binomial distribution with \code{mu = means} and
#' \code{size = 1 / counts.disp}. See \code{\link{SimpleParams}} for more
#' details of the parameters.
#'
#' @return SCESet containing simulated counts
#' @examples
#' sim <- simpleSimulate()
#' # Override default parameters
#' sim <- simpleSimulate(nGenes = 1000, nCells = 50)
simpleSimulate <- function(params = newSimpleParams(), verbose = TRUE, ...) {
checkmate::assertClass(params, "SimpleParams")
params <- setParams(params, ...)
# Set random seed
seed <- getParam(params, "seed")
set.seed(seed)
# Get the parameters we are going to use
nCells <- getParam(params, "nCells")
nGenes <- getParam(params, "nGenes")
mean.shape <- getParam(params, "mean.shape")
mean.rate <- getParam(params, "mean.rate")
count.disp <- getParam(params, "count.disp")
if (verbose) {message("Simulating means...")}
means <- rgamma(nGenes, shape = mean.shape, rate = mean.rate)
if (verbose) {message("Simulating counts...")}
counts <- matrix(rnbinom(nGenes * nCells, mu = means,
nrow = nGenes, ncol = nCells)
if (verbose) {message("Creating final SCESet...")}
cell.names <- paste0("Cell", 1:nCells)
gene.names <- paste0("Gene", 1:nGenes)
rownames(counts) <- gene.names
colnames(counts) <- cell.names
phenos <- new("AnnotatedDataFrame", data = data.frame(Cell = cell.names))
rownames(phenos) <- cell.names
features <- new("AnnotatedDataFrame",
data = data.frame(Gene = gene.names, GeneMean = means))
rownames(features) <- gene.names
sim <- newSCESet(countData = counts, phenoData = phenos,
featureData = features)
return(sim)
}