Newer
Older
#' The Params virtual class
#'
#' Virtual S4 class that all other Params classes inherit from.
#'
#' @section Parameters:
#'
#' The Params class defines the following parameters:
#'
#' \describe{
#' \item{\code{[nGenes]}}{The number of genes to simulate.}
#' \item{\code{[nCells]}}{The number of cells to simulate.}
#' \item{\code{seed}}{Seed to use for generating random numbers.}
#' }
#'
#' The parameters shown in brackets can be estimated from real data.
#'
#' @name Params
#' @rdname Params
#' @aliases Params-class
setClass("Params",
contains = "VIRTUAL",
slots = c(nGenes = "numeric",
nCells = "numeric",
seed = "numeric"),
prototype = prototype(nGenes = 10000, nCells = 100,
seed = sample(1:1e6, 1)))
#' The SimpleParams class
#'
#' S4 class that holds parameters for the simple simulation.
#'
#' @section Parameters:
#'
#' The simple simulation uses the following parameters:
#'
#' \describe{
#' \item{\code{nGenes}}{The number of genes to simulate.}
#' \item{\code{nCells}}{The number of cells to simulate.}
#' \item{\code{[seed]}}{Seed to use for generating random numbers.}
#' \item{\code{mean.shape}}{The shape parameter for the mean gamma
#' \item{\code{mean.rate}}{The rate parameter for the mean gamma
#' \item{\code{[count.disp]}}{The dispersion parameter for the counts negative
#' The parameters not shown in brackets can be estimated from real data using
#' \code{\link{simpleEstimate}}. For details of the simple simulation
#' see \code{\link{simpleSimulate}}.
#'
#' @name SimpleParams
#' @rdname SimpleParams
#' @aliases SimpleParams-class
#' @exportClass SimpleParams
setClass("SimpleParams",
contains = "Params",
slots = c(mean.shape = "numeric",
mean.rate = "numeric",
count.disp = "numeric"),
prototype = prototype(mean.shape = 0.4, mean.rate = 0.3,
count.disp = 0.1))
#' The SplatParams class
#'
#' S4 class that holds parameters for the Splatter simulation.
#'
#' @section Parameters:
#'
#' The Splatter simulation requires the following parameters:
#'
#' \describe{
#' \item{\code{nGenes}}{The number of genes to simulate.}
#' \item{\code{nCells}}{The number of cells to simulate.}
#' \item{\code{[nGroups]}}{The number of groups or paths to simulate.}
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#' \item{\code{[groupCells]}}{Vector giving the number of cells in each
#' simulation group/path.}
#' \item{\code{[seed]}}{Seed to use for generating random numbers.}
#' \item{\emph{Mean parameters}}{
#' \describe{
#' \item{\code{mean.shape}}{Shape parameter for the mean gamma
#' distribution.}
#' \item{\code{mean.rate}}{Rate parameter for the mean gamma
#' distribution.}
#' }
#' }
#' \item{\emph{Library size parameters}}{
#' \describe{
#' \item{\code{lib.loc}}{Location (meanlog) parameter for the library
#' size log-normal distribution.}
#' \item{\code{lib.scale}}{Scale (sdlog) parameter for the library size
#' log-normal distribution.}
#' }
#' }
#' \item{\emph{Expression outlier parameters}}{
#' \describe{
#' \item{\code{out.prob}}{Probability that a gene is an expression
#' outlier.}
#' \item{\code{out.loProb}}{Probability that an expression outlier gene
#' is lowly expressed.}
#' \item{\code{out.facLoc}}{Location (meanlog) parameter for the
#' expression outlier factor log-normal distribution.}
#' \item{\code{out.facScale}}{Scale (sdlog) parameter for the expression
#' outlier factor log-normal distribution.}
#' }
#' }
#' \item{\emph{Differential expression parameters}}{
#' \describe{
#' \item{\code{[de.prob]}}{Probability that a gene is differentially
#' expressed in a group. Can be a vector.}
#' \item{\code{[de.loProb]}}{Probability that differentially expressed
#' gene is down-regulated. Can be a vector.}
#' \item{\code{[de.facLoc]}}{Location (meanlog) parameter for the
#' differential expression factor log-normal distribution. Can be a
#' vector.}
#' \item{\code{[de.facScale]}}{Scale (sdlog) parameter for the
#' differential expression factor log-normal distribution. Can be a
#' vector.}
#' }
#' }
#' \item{\emph{Biological Coefficient of Variation parameters}}{
#' \describe{
#' \item{\code{bcv.common}}{Underlying common dispersion across all
#' genes.}
#' \item{\code{bcv.df}}{Degrees of Freedom for the BCV inverse chi-squared
#' distribution.}
#' }
#' }
#' \item{\emph{Dropout parameters}}{
#' \describe{
#' \item{\code{dropout.present}}{Logical. Whether to simulate dropout.}
#' \item{\code{dropout.mid}}{Midpoint parameter for the dropout logistic
#' function.}
#' \item{\code{dropout.shape}}{Shape parameter for the dropout logistic
#' function.}
#' }
#' }
#' \item{\emph{Differentiation path parameters}}{
#' \describe{
#' \item{\code{[path.from]}}{Vector giving the originating point of each
#' path. This allows path structure such as a cell type which
#' differentiates into an intermediate cell type that then differentiates
#' into two mature cell types. A path structure of this form would have a
#' "from" parameter of c(0, 1, 1) (where 0 is the origin). If no vector is
#' given all paths will start at the origin.}
#' \item{\code{[path.length]}}{Vector giving the number of steps to
#' simulate along each path. If a single value is given it will be applied
#' to all paths.}
#' \item{\code{[path.skew]}}{Vector giving the skew of each path. Values
#' closer to 1 will give more cells towards the starting population,
#' values closer to 0 will give more cells towards the final population.
#' If a single value is given it will be applied to all paths.}
#' \item{\code{[path.nonlinearProb]}}{Probability that a gene follows a
#' non-linear path along the differentiation path. This allows more
#' complex gene patterns such as a gene being equally expressed at the
#' beginning an end of a path but lowly expressed in the middle.}
#' \item{\code{[path.sigmaFac]}}{Sigma factor for non-linear gene paths.
#' A higher value will result in more extreme non-linear variations along
#' a path.}
#' }
#' }
#' }
#'
#' The parameters not shown in brackets can be estimated from real data using
#' \code{\link{splatEstimate}}. For details of the Splatter simulation
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#' see \code{\link{splatSimulate}}.
#'
#' @name SplatParams
#' @rdname SplatParams
#' @aliases SplatParams-class
#' @exportClass SplatParams
setClass("SplatParams",
contains = "Params",
slots = c(nGroups = "numeric",
groupCells = "numeric",
mean.shape = "numeric",
mean.rate = "numeric",
lib.loc = "numeric",
lib.scale = "numeric",
out.prob = "numeric",
out.loProb = "numeric",
out.facLoc = "numeric",
out.facScale = "numeric",
de.prob = "numeric",
de.downProb = "numeric",
de.facLoc = "numeric",
de.facScale = "numeric",
bcv.common = "numeric",
bcv.df = "numeric",
dropout.present = "logical",
dropout.mid = "numeric",
dropout.shape = "numeric",
path.from = "numeric",
path.length = "numeric",
path.skew = "numeric",
path.nonlinearProb = "numeric",
path.sigmaFac = "numeric"),
prototype = prototype(nGroups = 1,
groupCells = 100,
mean.rate = 0.3,
mean.shape = 0.4,
lib.loc = 10,
lib.scale = 0.5,
out.prob = 0.1,
out.loProb = 0.5,
out.facLoc = 4,
out.facScale = 1,
de.prob = 0.1,
de.downProb = 0.5,
de.facLoc = 4,
de.facScale = 1,
bcv.common = 0.1,
bcv.df = 25,
dropout.present = TRUE,
dropout.mid = 0,
dropout.shape = -1,
path.from = 0,
path.length = 100,
path.skew = 0.5,
path.nonlinearProb = 0.1,
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#'
#' S4 class that holds parameters for the Lun simulation.
#'
#' @section Parameters:
#'
#' The Lun simulation uses the following parameters:
#'
#' \describe{
#' \item{\code{nGenes}}{The number of genes to simulate.}
#' \item{\code{nCells}}{The number of cells to simulate.}
#' \item{\code{[nGroups]}}{The number of groups to simulate.}
#' \item{\code{[groupCells]}}{Vector giving the number of cells in each
#' simulation group/path.}
#' \item{\code{[seed]}}{Seed to use for generating random numbers.}
#' \item{\emph{Mean parameters}}{
#' \describe{
#' \item{\code{[mean.shape]}}{Shape parameter for the mean gamma
#' distribution.}
#' \item{\code{[mean.rate]}}{Rate parameter for the mean gamma
#' distribution.}
#' }
#' }
#' \item{\emph{Counts parameters}}{
#' \describe{
#' \item{\code{[count.disp]}}{The dispersion parameter for the counts
#' negative binomial distribution.}
#' }
#' }
#' \item{\emph{Differential expression parameters}}{
#' \describe{
#' \item{\code{[de.nGenes]}}{The number of genes that are differentially
#' expressed in each group}
#' \item{\code{[de.upProb]}}{The proportion of differentially expressed
#' genes that are up-regulated in each group}
#' \item{\code{[de.upFC]}}{The fold change for up-regulated genes}
#' \item{\code{[de.downFC]}}{The fold change for down-regulated genes}
#' }
#' }
#' }
#'
#' The parameters not shown in brackets can be estimated from real data using
#' \code{\link{lunEstimate}}. For details of the Lun simulation see
#' \code{\link{lunSimulate}}.
#'
#' @name LunParams
#' @rdname LunParams
#' @aliases LunParams-class
#' @exportClass LunParams
setClass("LunParams",
contains = "SimpleParams",
slots = c(nGroups = "numeric",
groupCells = "numeric",
de.nGenes = "numeric",
de.upProp = "numeric",
de.upFC = "numeric",
de.downFC = "numeric"),
prototype = prototype(nGroups = 1, groupCells = 100, mean.shape = 2,
mean.rate = 2, de.nGenes = 1000, de.upProp = 0.5,
de.upFC = 5, de.downFC = 0))
#' The Lun2Params class
#'
#' S4 class that holds parameters for the Lun simulation.
#'
#' @section Parameters:
#'
#' The Lun2 simulation uses the following parameters:
#'
#' \describe{
#' \item{\code{nGenes}}{The number of genes to simulate.}
#' \item{\code{nCells}}{The number of cells to simulate.}
#' \item{\code{[seed]}}{Seed to use for generating random numbers.}
#' \item{\code{[nPlates]}}{The number of plates to simulate.}
#' \item{\emph{Plate parameters}}{
#' \describe{
#' \item{\code{plate.ingroup}}{Character vecotor giving the plates
#' considered to be part of the "ingroup".}
#' \item{\code{plate.mod}}{Plate effect modifier factor. The plate effect
#' variance is divided by this value.}
#' \item{\code{plate.var}}{Plate effect variance.}
#' }
#' }
#' \item{\emph{Gene parameters}}{
#' \describe{
#' \item{\code{gene.means}}{Mean expression for each gene.}
#' \item{\code{gene.disps}}{Dispersion for each gene.}
#' \item{\code{gene.ziMeans}}{Zero-inflated gene means.}
#' \item{\code{gene.ziDisps}}{Zero-inflated gene dispersions.}
#' \item{\code{gene.ziProps}}{Zero-inflated gene zero proportions.}
#' }
#' }
#' \item{\emph{Cell parameters}}{
#' \describe{
#' \item{\code{cell.plates}}{Factor giving the plate that each cell comes
#' from.}
#' \item{\code{cell.libSizes}}{Library size for each cell.}
#' \item{\code{cell.libMod}}{Modifier factor for library sizes.
#' The library sizes are multiplied by this value.}
#' }
#' }
#' \item{\emph{Differential expression parameters}}{
#' \describe{
#' \item{\code{de.nGenes}}{Number of differentially expressed genes.}
#' \item{\code{de.fc}}{Fold change for differentially expressed genes.}
#' }
#' }
#' }
#'
#' The parameters not shown in brackets can be estimated from real data using
#' \code{\link{lun2Estimate}}. For details of the Lun2 simulation see
#' \code{\link{lun2Simulate}}.
#'
#' @name Lun2Params
#' @rdname Lun2Params
#' @aliases Lun2Params-class
#' @exportClass Lun2Params
setClass("Lun2Params",
contains = "Params",
slots = c(nPlates = "numeric",
plate.mod = "numeric",
plate.var = "numeric",
gene.means = "numeric",
gene.disps = "numeric",
gene.ziMeans = "numeric",
gene.ziDisps = "numeric",
gene.ziProps = "numeric",
cell.plates = "numeric",
cell.libSizes = "numeric",
cell.libMod = "numeric",
de.nGenes = "numeric",
plate.mod = 1,
plate.var = 14,
gene.means = rep(3.2, 10000),
gene.disps = rep(0.03, 10000),
gene.ziMeans = rep(1.6, 10000),
gene.ziDisps = rep(0.1, 10000),
gene.ziProps = rep(2.3e-6, 10000),
cell.libSizes = rep(70000, 100),
cell.libMod = 1,
de.nGenes = 0,
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
de.fc = 3))
#' The SCDDParams class
#'
#' S4 class that holds parameters for the scDD simulation.
#'
#' @section Parameters:
#'
#' The SCDD simulation uses the following parameters:
#'
#' \describe{
#' \item{\code{nGenes}}{The number of genes to simulate.}
#' \item{\code{nCells}}{The number of cells to simulate.}
#' \item{\code{[seed]}}{Seed to use for generating random numbers.}
#' \item{\code{SCdat}}{\code{\link{ExpressSet}} containing real data.}
#' \item{\code{[nDE]}}{Number of DE genes to simulate.}
#' \item{\code{[nDP]}}{Number of DP genes to simulate.}
#' \item{\code{[nDM]}}{Number of DM genes to simulate.}
#' \item{\code{[nDB]}}{Number of DB genes to simulate.}
#' \item{\code{[nEE]}}{Number of EE genes to simulate.}
#' \item{\code{[nEP]}}{Number of EP genes to simulate.}
#' \item{\code{[sd.range]}}{Interval for fold change standard deviations.}
#' \item{\code{[modeFC]}}{Values for DP, DM and DB mode fold changes.}
#' \item{\code{[varInflation}]}{Variance inflation factors for each
#' condition.}
#' }
#'
#' The parameters not shown in brackets can be estimated from real data using
#' \code{\link{scDDEstimate}}. See \code{\link[scDD]{simulateSet}} for more
#' details of the parameters. For details of the Splatter implementation of the
#' scDD simulation see \code{\link{scDDSimulate}}.
#'
#' @name SCDDParams
#' @rdname SCDDParams
#' @aliases SCDDParams-class
#' @exportClass SCDDParams
setClass("SCDDParams",
contains = "Params",
slots = c(SCDat = "ExpressionSet",
nDE = "numeric",
nDP = "numeric",
nDM = "numeric",
nDB = "numeric",
nEE = "numeric",
nEP = "numeric",
sd.range = "numeric",
modeFC = "numeric",
varInflation = "numeric"),
prototype = prototype(SCDat = ExpressionSet(),
nCells = 100,
nDE = 250,
nDP = 250,
nDM = 250,
nDB = 250,
nEE = 5000,
nEP = 4000,
sd.range = c(1, 3),
modeFC = c(2, 3, 4),
varInflation = c(1, 1)))