Newer
Older
#' Compare SCESet objects
#'
#' Combine the data from several SCESet objects and produce some basic plots
#'
#' @param sces named list of SCESet objects to combine and compare.
#'
#' @details
#' \item{\code{FeatureData}}{Combined feature data from the provided
#' SCESets.}
#' \item{\code{PhenoData}}{Combined pheno data from the provided SCESets.}
#' \item{\code{Plots}}{Comparison plots
#' \describe{
#' \item{\code{Means}}{Violin plot of mean distribution.}
#' \item{\code{Variances}}{Violin plot of variance distribution.}
#' \item{\code{MeanVar}}{Scatter plot with fitted lines showing the
#' mean-variance relationship.}
#' \item{\code{LibraySizes}}{Boxplot of the library size
#' distribution.}
#' \item{\code{ZerosGene}}{Boxplot of the percentage of each gene
#' that is zero.}
#' \item{\code{ZerosCell}}{Boxplot of the percentage of each cell
#' that is zero.}
#' \item{\code{MeanZeros}}{Scatter plot with fitted lines showing
#' the mean-dropout relationship.}
#' }
#' }
#' }
#'
#' The plots returned by this function are created using
#' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you
#' might like to consider. The data used to create these plots is also returned
#' and should be in the correct format to allow you to create further plots
#' using \code{\link[ggplot2]{ggplot}}.
#'
#' @return List containing the combined datasets and plots.
#' @examples
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compareSCESets(list(Splat = sim1, Simple = sim2))
#' names(comparison)
#' names(comparison$Plots)
#' @importFrom ggplot2 ggplot aes_string geom_point geom_smooth geom_boxplot
#' geom_violin scale_y_continuous scale_y_log10 scale_x_log10 xlab ylab ggtitle
#' theme_minimal
compareSCESets <- function(sces) {
checkmate::assertList(sces, types = "SCESet", any.missing = FALSE,
min.len = 1, names = "unique")
for (name in names(sces)) {
sce <- sces[[name]]
fData(sce)$Dataset <- name
pData(sce)$Dataset <- name
sce <- scater::calculateQCMetrics(sce)
cpm(sce) <- edgeR::cpm(counts(sce))
sce <- addFeatureStats(sce, "counts")
sce <- addFeatureStats(sce, "cpm")
sce <- addFeatureStats(sce, "cpm", log = TRUE)
sces[[name]] <- sce
}
fData.all <- fData(sces[[1]])
pData.all <- pData(sces[[1]])
if (length(sces) > 1) {
for (name in names(sces)[-1]) {
fData.all <- rbindMatched(fData.all, fData(sce))
pData.all <- rbindMatched(pData.all, pData(sce))
}
}
fData.all$Dataset <- factor(fData.all$Dataset, levels = names(sces))
pData.all$Dataset <- factor(pData.all$Dataset, levels = names(sces))
aes_string(x = "Dataset", y = "mean_log_cpm",
colour = "Dataset")) +
geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) +
ylab(expression(paste("Mean ", log[2], "(CPM + 1)"))) +
ggtitle("Distribution of mean expression") +
aes_string(x = "Dataset", y = "var_cpm",
colour = "Dataset")) +
geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) +
scale_y_log10(labels = scales::comma) +
ylab("CPM Variance") +
ggtitle("Distribution of variance") +
theme_minimal()
mean.var <- ggplot(fData.all,
aes_string(x = "mean_log_cpm", y = "var_log_cpm",
geom_smooth() +
xlab(expression(paste("Mean ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) +
ggtitle("Mean-variance relationship") +
theme_minimal()
libs <- ggplot(pData.all,
aes_string(x = "Dataset", y = "total_counts",
colour = "Dataset")) +
geom_boxplot() +
scale_y_continuous(labels = scales::comma) +
ylab("Total counts per cell") +
ggtitle("Distribution of library sizes") +
theme_minimal()
z.gene <- ggplot(fData.all,
aes_string(x = "Dataset", y = "pct_dropout",
colour = "Dataset")) +
geom_boxplot() +
scale_y_continuous(limits = c(0, 100)) +
ylab("Percentage zeros per gene") +
ggtitle("Distribution of zeros per gene") +
theme_minimal()
z.cell <- ggplot(pData.all,
aes_string(x = "Dataset", y = "pct_dropout",
colour = "Dataset")) +
geom_boxplot() +
scale_y_continuous(limits = c(0, 100)) +
ylab("Percentage zeros per cell") +
ggtitle("Distribution of zeros per cell") +
theme_minimal()
scale_x_log10(labels = scales::comma) +
xlab("Mean count") +
ylab("Percentage zeros") +
ggtitle("Mean-dropout relationship") +
theme_minimal()
comparison <- list(FeatureData = fData.all,
PhenoData = pData.all,
Plots = list(Means = means,
Variances = vars,
MeanVar = mean.var,
LibrarySizes = libs,
ZerosGene = z.gene,
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#' Diff SCESet objects
#'
#' Combine the data from several SCESet objects and produce some basic plots
#' comparing them to a reference.
#'
#' @param sces named list of SCESet objects to combine and compare.
#' @param ref string giving the name of the SCESet to use as the reference
#'
#' @details
#'
#' This function aims to look at the differences between a reference SCESet and
#' one or more others. It requires each SCESet to have the same dimensions.
#' Properties are compared by ranks, for example when comparing the means the
#' values are ordered and the differences between the reference and another
#' dataset plotted. A series of Q-Q plots are also returned.
#'
#' The returned list has five items:
#'
#' \describe{
#' \item{\code{Reference}}{The SCESet used as the reference.}
#' \item{\code{FeatureData}}{Combined feature data from the provided
#' SCESets.}
#' \item{\code{PhenoData}}{Combined pheno data from the provided SCESets.}
#' \item{\code{Plots}}{Difference plots
#' \describe{
#' \item{\code{Means}}{Boxplot of mean differences.}
#' \item{\code{Variances}}{Boxplot of variance differences.}
#' \item{\code{MeanVar}}{Scatter plot showing the difference from
#' the reference variance across expression ranks.}
#' \item{\code{LibraySizes}}{Boxplot of the library size
#' differences.}
#' \item{\code{ZerosGene}}{Boxplot of the differences in the
#' percentage of each gene that is zero.}
#' \item{\code{ZerosCell}}{Boxplot of the differences in the
#' percentage of each cell that is zero.}
#' \item{\code{MeanZeros}}{Scatter plot showing the difference from
#' the reference percentage of zeros across expression ranks.}
#' }
#' }
#' \item{\code{QQPlots}}{Quantile-Quantile plots
#' \describe{
#' \item{\code{Means}}{Q-Q plot of the means.}
#' \item{\code{Variances}}{Q-Q plot of the variances.}
#' \item{\code{LibrarySizes}}{Q-Q plot of the library sizes.}
#' \item{\code{ZerosGene}}{Q-Q plot of the percentage of zeros per
#' gene.}
#' \item{\code{ZerosCell}}{Q-Q plot of the percentage of zeros per
#' cell.}
#' }
#' }
#' }
#'
#' The plots returned by this function are created using
#' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you
#' might like to consider. The data used to create these plots is also returned
#' and should be in the correct format to allow you to create further plots
#' using \code{\link[ggplot2]{ggplot}}.
#'
#' @return List containing the combined datasets and plots.
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, groupCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCESets(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' names(difference)
#' names(difference$Plots)
#' @importFrom ggplot2 ggplot aes_string geom_point geom_boxplot xlab ylab
#' ggtitle theme_minimal
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#' @importFrom scater cpm<-
#' @export
diffSCESets <- function(sces, ref) {
checkmate::assertList(sces, types = "SCESet", any.missing = FALSE,
min.len = 2, names = "unique")
checkmate::assertString(ref)
if (!(ref %in% names(sces))) {
stop("'ref' must be the name of an SCESet in 'sces'")
}
ref.dim <- dim(sces[[ref]])
for (name in names(sces)) {
sce <- sces[[name]]
if (!identical(dim(sce), ref.dim)) {
stop("SCESets must have the same dimensions")
}
fData(sce)$Dataset <- name
pData(sce)$Dataset <- name
sce <- scater::calculateQCMetrics(sce)
cpm(sce) <- edgeR::cpm(counts(sce))
sce <- addFeatureStats(sce, "counts")
sce <- addFeatureStats(sce, "cpm", log = TRUE)
sces[[name]] <- sce
}
ref.sce <- sces[[ref]]
ref.means <- sort(fData(ref.sce)$mean_log_cpm)
ref.vars <- sort(fData(ref.sce)$var_log_cpm)
ref.libs <- sort(pData(ref.sce)$total_counts)
ref.z.gene <- sort(fData(ref.sce)$pct_dropout)
ref.z.cell <- sort(pData(ref.sce)$pct_dropout)
ref.vars.meanrank <- fData(ref.sce)$var_log_cpm[order(fData(ref.sce)$exprs_rank)]
ref.z.gene.meanrank <- fData(ref.sce)$pct_dropout[order(fData(ref.sce)$exprs_rank)]
for (name in names(sces)) {
sce <- sces[[name]]
fData(sce)$RefRankMeanLogCPM <- ref.means[rank(fData(sce)$mean_log_cpm)]
fData(sce)$RankDiffMeanLogCPM <- fData(sce)$mean_log_cpm -
fData(sce)$RefRankMeanLogCPM
fData(sce)$RefRankVarLogCPM <- ref.vars[rank(fData(sce)$var_log_cpm)]
fData(sce)$RankDiffVarLogCPM <- fData(sce)$var_log_cpm -
fData(sce)$RefRankVarLogCPM
pData(sce)$RefRankLibSize <- ref.libs[rank(pData(sce)$total_counts)]
pData(sce)$RankDiffLibSize <- pData(sce)$total_counts -
pData(sce)$RefRankLibSize
fData(sce)$RefRankZeros <- ref.z.gene[rank(fData(sce)$pct_dropout)]
fData(sce)$RankDiffZeros <- fData(sce)$pct_dropout -
fData(sce)$RefRankZeros
pData(sce)$RefRankZeros <- ref.z.cell[rank(pData(sce)$pct_dropout)]
pData(sce)$RankDiffZeros <- pData(sce)$pct_dropout -
pData(sce)$RefRankZeros
fData(sce)$MeanRankVarDiff <- fData(sce)$var_log_cpm -
ref.vars.meanrank[fData(sce)$exprs_rank]
fData(sce)$MeanRankZerosDiff <- fData(sce)$pct_dropout -
ref.z.gene.meanrank[fData(sce)$exprs_rank]
sces[[name]] <- sce
}
ref.sce <- sces[[ref]]
sces[[ref]] <- NULL
fData.all <- fData(sces[[1]])
pData.all <- pData(sces[[1]])
if (length(sces) > 1) {
for (name in names(sces)[-1]) {
sce <- sces[[name]]
fData.all <- rbindMatched(fData.all, fData(sce))
pData.all <- rbindMatched(pData.all, pData(sce))
}
}
fData.all$Dataset <- factor(fData.all$Dataset, levels = names(sces))
pData.all$Dataset <- factor(pData.all$Dataset, levels = names(sces))
means <- ggplot(fData.all,
aes_string(x = "Dataset", y = "RankDiffMeanLogCPM",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
ylab(expression(paste("Rank difference mean ", log[2], "(CPM + 1)"))) +
ggtitle("Difference in mean expression") +
theme_minimal()
vars <- ggplot(fData.all,
aes_string(x = "Dataset", y = "RankDiffVarLogCPM",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
ylab(expression(paste("Rank difference variance ", log[2],
"(CPM + 1)"))) +
ggtitle("Difference in variance") +
theme_minimal()
mean.var <- ggplot(fData.all,
aes_string(x = "exprs_rank", y = "MeanRankVarDiff",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_point() +
xlab("Expression rank") +
ylab(expression(paste("Difference in variance ", log[2],
"(CPM + 1)"))) +
ggtitle("Difference in mean-variance relationship") +
theme_minimal()
libs <- ggplot(pData.all,
aes_string(x = "Dataset", y = "RankDiffLibSize",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
ylab(paste("Rank difference libray size")) +
ggtitle("Difference in library sizes") +
theme_minimal()
z.gene <- ggplot(fData.all,
aes_string(x = "Dataset", y = "RankDiffZeros",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
ylab(paste("Rank difference percentage zeros")) +
ggtitle("Difference in zeros per gene") +
theme_minimal()
z.cell <- ggplot(pData.all,
aes_string(x = "Dataset", y = "RankDiffZeros",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
ylab(paste("Rank difference percentage zeros")) +
ggtitle("Difference in zeros per cell") +
theme_minimal()
mean.zeros <- ggplot(fData.all,
aes_string(x = "exprs_rank", y = "MeanRankZerosDiff",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_point() +
xlab("Expression rank") +
ylab("Difference in percentage zeros per gene") +
ggtitle("Difference in mean-zeros relationship") +
theme_minimal()
means.qq <- ggplot(fData.all,
aes_string(x = "RefRankMeanLogCPM", y = "mean_log_cpm",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point() +
xlab(expression(paste("Reference mean ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Alternative mean ", log[2], "(CPM + 1)"))) +
ggtitle("Ranked means") +
theme_minimal()
vars.qq <- ggplot(fData.all,
aes_string(x = "RefRankVarLogCPM", y = "var_log_cpm",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point() +
xlab(expression(paste("Reference variance ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Alternative variance ", log[2], "(CPM + 1)"))) +
ggtitle("Ranked variances") +
theme_minimal()
libs.qq <- ggplot(pData.all,
aes_string(x = "RefRankLibSize", y = "total_counts",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point() +
xlab("Reference library size") +
ylab("Alternative library size") +
ggtitle("Ranked library sizes") +
theme_minimal()
z.gene.qq <- ggplot(fData.all,
aes_string(x = "RefRankZeros", y = "pct_dropout",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point() +
xlab("Reference percentage zeros") +
ylab("Alternative percentage zeros") +
ggtitle("Ranked percentage zeros per gene") +
theme_minimal()
z.cell.qq <- ggplot(pData.all,
aes_string(x = "RefRankZeros", y = "pct_dropout",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point() +
xlab("Reference percentage zeros") +
ylab("Alternative percentage zeros") +
ggtitle("Ranked percentage zeros per cell") +
theme_minimal()
comparison <- list(Reference = ref.sce,
FeatureData = fData.all,
PhenoData = pData.all,
Plots = list(Means = means,
Variances = vars,
MeanVar = mean.var,
LibrarySizes = libs,
ZerosGene = z.gene,
ZerosCell = z.cell,
MeanZeros = mean.zeros),
QQPlots = list(Means = means.qq,
Variances = vars.qq,
LibrarySizes = libs.qq,
ZerosGene = z.gene.qq,
ZerosCell = z.cell.qq))
return(comparison)
}