Skip to content
Snippets Groups Projects
splat-simulate.R 25.4 KiB
Newer Older
#' Splatter simulation
#'
#' Simulate count data from a fictional single-cell RNA-seq experiment using
#' the Splatter method.
#'
#' @param params SplatParams object containing parameters for the simulation.
#'        See \code{\link{SplatParams}} for details.
#' @param method which simulation method to use. Options are "single" which
#'        produces a single population, "groups" which produces distinct groups
#'        (eg. cell types) or "paths" which selects cells from continuous
#'        trajectories (eg. differentiation processes).
#' @param verbose logical. Whether to print progress messages.
#' @param ... any additional parameter settings to override what is provided in
#'        \code{params}.
#'
#' @details
#' Parameters can be set in a variety of ways. If no parameters are provided
#' the default parameters are used. Any parameters in \code{params} can be
#' overridden by supplying additional arguments through a call to
#' \code{\link{setParams}}. This design allows the user flexibility in
#' how they supply parameters and allows small adjustments without creating a
#' new \code{SplatParams} object. See examples for a demonstration of how this
#' can be used.
#'
#' The simulation involves the following steps:
#' \enumerate{
#'   \item Set up simulation object
#'   \item Simulate library sizes
#'   \item Simulate gene means
#'   \item Simulate groups/paths
#'   \item Simulate BCV adjusted cell means
#'   \item Simulate true counts
#'   \item Simulate dropout
#'   \item Create final SCESet object
#' }
#'
#' The final output is an \code{\link[scater]{SCESet}} object that contains the
#' simulated counts but also the values for various intermediate steps. These
#' are stored in the \code{\link[Biobase]{phenoData}} (for cell specific
#' information), \code{\link[Biobase]{featureData}} (for gene specific
#' information) or \code{\link[Biobase]{assayData}} (for gene by cell matrices)
#' slots. This additional information includes:
#' \describe{
#'   \item{\code{phenoData}}{
#'     \describe{
#'       \item{Cell}{Unique cell identifier.}
#'       \item{Group}{The group or path the cell belongs to.}
#'       \item{ExpLibSize}{The expected library size for that cell.}
#'       \item{Step (paths only)}{how far along the path each cell is.}
#'     }
#'   }
#'   \item{\code{featureData}}{
#'     \describe{
#'       \item{Gene}{Unique gene identifier.}
#'       \item{BaseGeneMean}{The base expression level for that gene.}
#'       \item{OutlierFactor}{Expression outlier factor for that gene. Values
#'       of 1 indicate the gene is not an expression outlier.}
#'       \item{GeneMean}{Expression level after applying outlier factors.}
#'       \item{DEFac[Group]}{The differential expression factor for each gene
#'       in a particular group. Values of 1 indicate the gene is not
#'       differentially expressed.}
#'       \item{GeneMean[Group]}{Expression level of a gene in a particular
#'       group after applying differential expression factors.}
#'     }
#'   }
#'   \item{\code{assayData}}{
#'     \describe{
#'       \item{BaseCellMeans}{The expression of genes in each cell adjusted for
#'       expected library size.}
#'       \item{BCV}{The Biological Coefficient of Variation for each gene in
#'       each cell.}
#'       \item{CellMeans}{The expression level of genes in each cell adjusted
#'       for BCV.}
#'       \item{TrueCounts}{The simulated counts before dropout.}
#'       \item{Dropout}{Logical matrix showing which values have been dropped
#'       in which cells.}
#'     }
#'   }
#' }
#'
#' Values that have been added by Splatter are named using \code{CamelCase} in
#' order to differentiate them from the values added by Scater which uses
#' \code{underscore_naming}.
#'
#' @return SCESet object containing the simulated counts and intermediate
#' values.
#'
#' @seealso
#' \code{\link{splatSimLibSizes}}, \code{\link{splatSimGeneMeans}},
#' \code{\link{splatSimDE}}, \code{\link{splatSimCellMeans}},
#' \code{\link{splatSimBCVMeans}}, \code{\link{splatSimTrueCounts}},
#' \code{\link{splatSimDropout}}
#'
#' @examples
#' # Simulation with default parameters
#' sim <- splatSimulate()
#' # Simulation with different number of genes
#' sim <- splatSimulate(nGenes = 1000)
#' # Simulation with custom parameters
#' params <- newSplatParams(nGenes = 100, mean.rate = 0.5)
#' sim <- splatSimulate(params)
#' # Simulation with adjusted custom parameters
#' sim <- splatSimulate(params, mean.rate = 0.6, out.prob = 0.2)
#' # Simulate groups
#' sim <- splatSimulate(method = "groups")
#' # Simulate paths
#' sim <- splatSimulate(method = "paths")
#' @importFrom Biobase fData pData pData<- assayData
#' @importFrom scater newSCESet counts
#' @export
splatSimulate <- function(params = newSplatParams(),
                          method = c("single", "groups", "paths"),
                          verbose = TRUE, ...) {

Luke Zappia's avatar
Luke Zappia committed
    checkmate::assertClass(params, "SplatParams")

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    method <- match.arg(method)

    if (verbose) {message("Getting parameters...")}
    params <- setParams(params, ...)
    params <- expandParams(params)
    validObject(params)

    # Set random seed
    seed <- getParam(params, "seed")
    set.seed(seed)

    # Get the parameters we are going to use
    nCells <- getParam(params, "nCells")
    nGenes <- getParam(params, "nGenes")
    nGroups <- getParam(params, "nGroups")
    group.cells <- getParam(params, "groupCells")

    if (nGroups == 1 && method == "groups") {
        warning("nGroups is 1, switching to single mode")
        method <- "single"
    }

    if (verbose) {message("Creating simulation object...")}
    # Set up name vectors
    cell.names <- paste0("Cell", 1:nCells)
    gene.names <- paste0("Gene", 1:nGenes)
    if (method == "groups") {
        group.names <- paste0("Group", 1:nGroups)
    } else if (method == "paths") {
        group.names <- paste0("Path", 1:nGroups)
    }

    # Create SCESet with dummy counts to store simulation
    dummy.counts <- matrix(1, ncol = nCells, nrow = nGenes)
    rownames(dummy.counts) <- gene.names
    colnames(dummy.counts) <- cell.names
    phenos <- new("AnnotatedDataFrame", data = data.frame(Cell = cell.names))
    rownames(phenos) <- cell.names
    features <- new("AnnotatedDataFrame", data = data.frame(Gene = gene.names))
    rownames(features) <- gene.names
    sim <- newSCESet(countData = dummy.counts, phenoData = phenos,
                     featureData = features)

    # Make groups vector which is the index of param$groupCells repeated
    # params$groupCells[index] times
    if (method != "single") {
        groups <- lapply(1:nGroups, function(i, g) {rep(i, g[i])},
                         g = group.cells)
        groups <- unlist(groups)
        pData(sim)$Group <- group.names[groups]
    }

    if (verbose) {message("Simulating library sizes...")}
    sim <- splatSimLibSizes(sim, params)
    if (verbose) {message("Simulating gene means...")}
    sim <- splatSimGeneMeans(sim, params)
    if (method == "single") {
        sim <- splatSimSingleCellMeans(sim, params)
    } else if (method == "groups") {
        if (verbose) {message("Simulating group DE...")}
        sim <- splatSimGroupDE(sim, params)
        if (verbose) {message("Simulating cell means...")}
        sim <- splatSimGroupCellMeans(sim, params)
    } else {
        if (verbose) {message("Simulating path endpoints...")}
        sim <- splatSimPathDE(sim, params)
        if (verbose) {message("Simulating path steps...")}
        sim <- splatSimPathCellMeans(sim, params)
    }
    if (verbose) {message("Simulating BCV...")}
    sim <- splatSimBCVMeans(sim, params)
    if (verbose) {message("Simulating counts..")}
    sim <- splatSimTrueCounts(sim, params)
    if (verbose) {message("Simulating dropout...")}
    sim <- splatSimDropout(sim, params)

    if (verbose) {message("Creating final SCESet...")}
    # Create new SCESet to make sure values are calculated correctly
    sce <- newSCESet(countData = counts(sim),
                     phenoData = new("AnnotatedDataFrame", data = pData(sim)),
                     featureData = new("AnnotatedDataFrame", data = fData(sim)))

    # Add intermediate matrices stored in assayData
    for (assay.name in names(assayData(sim))) {
        if (!(assay.name %in% names(assayData(sce)))) {
            assayData(sce)[[assay.name]] <- assayData(sim)[[assay.name]]
        }
    }

    if (verbose) {message("Done!")}
    return(sce)
}

#' @rdname splatSimulate
#' @export
splatSimulateSingle <- function(params = newSplatParams(),
                                verbose = TRUE, ...) {
    sim <- splatSimulate(params = params, method = "single",
                         verbose = verbose, ...)
    return(sim)
}

#' @rdname splatSimulate
#' @export
splatSimulateGroups <- function(params = newSplatParams(),
                                verbose = TRUE, ...) {
    sim <- splatSimulate(params = params, method = "groups",
                         verbose = verbose, ...)
    return(sim)
}

#' @rdname splatSimulate
#' @export
splatSimulatePaths <- function(params = newSplatParams(), verbose = TRUE, ...) {
    sim <- splatSimulate(params = params, method = "paths",
                         verbose = verbose, ...)
    return(sim)
}

#' Simulate library sizes
#'
#' Simulate expected library sizes from a log-normal distribution
#'
#' @param sim SCESet to add library size to.
#' @param params SplatParams object with simulation parameters.
#'
#' @return SCESet with simulated library sizes.
#'
#' @importFrom Biobase pData pData<-
#' @importFrom stats rlnorm
splatSimLibSizes <- function(sim, params) {

    nCells <- getParam(params, "nCells")
    lib.loc <- getParam(params, "lib.loc")
    lib.scale <- getParam(params, "lib.scale")

    exp.lib.sizes <- rlnorm(nCells, lib.loc, lib.scale)
    pData(sim)$ExpLibSize <- exp.lib.sizes

    return(sim)
}

#' Simulate gene means
#'
#' Simulate gene means from a gamma distribution. Also simulates outlier
#' expression factors. Genes with an outlier factor not equal to 1 are replaced
#' with the median mean expression multiplied by the outlier factor.
#'
#' @param sim SCESet to add gene means to.
#' @param params SplatParams object with simulation parameters.
#'
#' @return SCESet with simulated gene means.
#'
#' @importFrom Biobase fData fData<-
#' @importFrom stats rgamma median
splatSimGeneMeans <- function(sim, params) {

    nGenes <- getParam(params, "nGenes")
    mean.shape <- getParam(params, "mean.shape")
    mean.rate <- getParam(params, "mean.rate")
    out.prob <- getParam(params, "out.prob")
    out.loProb <- getParam(params, "out.loProb")
    out.facLoc <- getParam(params, "out.facLoc")
    out.facScale <- getParam(params, "out.facScale")

    # Simulate base gene means
    base.means.gene <- rgamma(nGenes, shape = mean.shape, rate = mean.rate)

    # Add expression outliers
    outlier.facs <- getLNormFactors(nGenes, out.prob, out.loProb, out.facLoc,
                                    out.facScale)
    median.means.gene <- median(base.means.gene)
    outlier.means <- median.means.gene * outlier.facs
    is.outlier <- outlier.facs != 1
    means.gene <- base.means.gene
    means.gene[is.outlier] <- outlier.means[is.outlier]

    fData(sim)$BaseGeneMean <- base.means.gene
    fData(sim)$OutlierFactor <- outlier.facs
    fData(sim)$GeneMean <- means.gene

    return(sim)
}

#' Simulate group differential expression
#'
#' Simulate differential expression. Differential expression factors for each
#' group are produced using \code{\link{getLNormFactors}} and these are added
#' along with updated means for each group. For paths care is taked to make sure
#' they are simualated in the correct order.
#'
#' @param sim SCESet to add differential expression to.
#' @param params splatParams object with simulation parameters.
#'
#' @return SCESet with simulated differential expression.
#'
#' @name splatSimDE
NULL

#' @rdname splatSimDE
#' @importFrom Biobase fData
splatSimGroupDE <- function(sim, params) {

    nGenes <- getParam(params, "nGenes")
    nGroups <- getParam(params, "nGroups")
    de.prob <- getParam(params, "de.prob")
    de.downProb <- getParam(params, "de.downProb")
    de.facLoc <- getParam(params, "de.facLoc")
    de.facScale <- getParam(params, "de.facScale")
    means.gene <- fData(sim)$GeneMean

    for (idx in 1:nGroups) {
        de.facs <- getLNormFactors(nGenes, de.prob[idx], de.downProb[idx],
                                   de.facLoc[idx], de.facScale[idx])
        group.means.gene <- means.gene * de.facs
        fData(sim)[[paste0("DEFacGroup", idx)]] <- de.facs
        fData(sim)[[paste0("GeneMeanGroup", idx)]] <- group.means.gene
    }

    return(sim)
}

#' @rdname splatSimDE
#' @importFrom Biobase fData
splatSimPathDE <- function(sim, params) {

    nGenes <- getParam(params, "nGenes")
    de.prob <- getParam(params, "de.prob")
    de.downProb <- getParam(params, "de.downProb")
    de.facLoc <- getParam(params, "de.facLoc")
    de.facScale <- getParam(params, "de.facScale")
    path.from <- getParam(params, "path.from")

    path.order <- getPathOrder(path.from)
    for (path in path.order) {
        from <- path.from[path]
        if (from == 0) {
            means.gene <- fData(sim)$GeneMean
        } else {
            means.gene <- fData(sim)[[paste0("GeneMeanPath", from)]]
        }
        de.facs <- getLNormFactors(nGenes, de.prob[path], de.downProb[path],
                                   de.facLoc[path], de.facScale[path])
        path.means.gene <- means.gene * de.facs
        fData(sim)[[paste0("DEFacPath", path)]] <- de.facs
        fData(sim)[[paste0("GeneMeanPath", path)]] <- path.means.gene
    }

    return(sim)
}

#' Simulate cell means
#'
#' Simulate a gene by cell matrix giving the mean expression for each gene in
#' each cell. Cells start with the mean expression for the group they belong to
#' (when simulating groups) or cells are assigned the mean expression from a
#' random position on the appropriate path (when simulating paths). The selected
#' means are adjusted for each cell's expected library size.
#'
#' @param sim SCESet to add cell means to.
#' @param params SplatParams object with simulation parameters.
#'
#' @return SCESet with added cell means.
#'
#' @name splatSimCellMeans
NULL

#' @rdname splatSimCellMeans
#' @importFrom Biobase fData pData assayData assayData<-
splatSimSingleCellMeans <- function(sim, params) {

    nCells <- getParam(params, "nCells")
    cell.names <- pData(sim)$Cell
    gene.names <- fData(sim)$Gene
    exp.lib.sizes <- pData(sim)$ExpLibSize

    cell.means.gene <- as.matrix(fData(sim)[, rep("GeneMean", nCells)])
    cell.props.gene <- t(t(cell.means.gene) / colSums(cell.means.gene))
    base.means.cell <- t(t(cell.props.gene) * exp.lib.sizes)
    colnames(base.means.cell) <- cell.names
    rownames(base.means.cell) <- gene.names

    assayData(sim)$BaseCellMeans <- base.means.cell

    return(sim)
}

#' @rdname splatSimCellMeans
#' @importFrom Biobase fData pData assayData assayData<-
splatSimGroupCellMeans <- function(sim, params) {

    nGroups <- getParam(params, "nGroups")
    cell.names <- pData(sim)$Cell
    gene.names <- fData(sim)$Gene
    groups <- pData(sim)$Group
    group.names <- unique(groups)
    exp.lib.sizes <- pData(sim)$ExpLibSize

    group.means.gene <- fData(sim)[, paste0("GeneMean", group.names)]
    cell.means.gene <- as.matrix(group.means.gene[, factor(groups)])
    cell.props.gene <- t(t(cell.means.gene) / colSums(cell.means.gene))
    base.means.cell <- t(t(cell.props.gene) * exp.lib.sizes)
    colnames(base.means.cell) <- cell.names
    rownames(base.means.cell) <- gene.names

    assayData(sim)$BaseCellMeans <- base.means.cell

    return(sim)
}

#' @rdname splatSimCellMeans
#' @importFrom Biobase fData pData assayData
#' @importFrom stats rbinom
splatSimPathCellMeans <- function(sim, params) {

    nGenes <- getParam(params, "nGenes")
    nGroups <- getParam(params, "nGroups")
    group.cells <- getParam(params, "groupCells")
    path.from <- getParam(params, "path.from")
    path.length <- getParam(params, "path.length")
    path.skew <- getParam(params, "path.skew")
    path.nonlinearProb <- getParam(params, "path.nonlinearProb")
    path.sigmaFac <- getParam(params, "path.sigmaFac")
    cell.names <- pData(sim)$Cell
    gene.names <- fData(sim)$Gene
    groups <- pData(sim)$Group
    group.names <- unique(groups)
    exp.lib.sizes <- pData(sim)$ExpLibSize

    # Generate paths. Each path is a matrix with path.length columns and
    # nGenes rows where the expression from each genes changes along the path.
    path.steps <- lapply(seq_along(path.from), function(idx) {
        from <- path.from[idx]
        # Find the means at the starting position
        if (from == 0) {
            means.start <- fData(sim)$GeneMean
        } else {
            means.start <- fData(sim)[[paste0("GeneMeanPath", from)]]
        }
        # Find the means at the end position
        means.end <- fData(sim)[[paste0("GeneMeanPath", idx)]]

        # Select genes to follow a non-linear path
        is.nonlinear <- as.logical(rbinom(nGenes, 1, path.nonlinearProb))
        sigma.facs <- rep(0, nGenes)
        sigma.facs[is.nonlinear] <- path.sigmaFac
        # Build Brownian bridges from start to end
        steps <- buildBridges(means.start, means.end, n = path.length[idx],
                              sigma.fac = sigma.facs)

        fData(sim)[[paste0("SigmaFacPath", idx)]] <- sigma.facs

        return(t(steps))
    })

    # Randomly assign a position in the appropriate path to each cell
    cell.steps <- lapply(1:nGroups, function(idx) {
        path.probs <- seq(path.skew[idx], 1 - path.skew[idx],
                          length = path.length[idx])
        path.probs <- path.probs / sum(path.probs)
        steps <- sort(sample(1:path.length[idx], group.cells[idx],
                             prob = path.probs, replace = TRUE))

        return(steps)
    })

    # Collect the underlying expression levels for each cell
    cell.means.gene <- lapply(1:nGroups, function(idx) {
        cell.means <- path.steps[[idx]][, cell.steps[[idx]]]
        return(cell.means)
    })
    cell.means.gene <- do.call(cbind, cell.means.gene)

    # Adjust expression based on library size
    cell.props.gene <- t(t(cell.means.gene) / colSums(cell.means.gene))
    base.means.cell <- t(t(cell.props.gene) * exp.lib.sizes)
    colnames(base.means.cell) <- cell.names
    rownames(base.means.cell) <- gene.names

    pData(sim)$Step <- unlist(cell.steps)
    assayData(sim)$BaseCellMeans <- base.means.cell

    return(sim)
}

#' Simulate BCV means
#'
#' Simulate means for each gene in each cell that are adjusted to follow a
#' mean-variance trend using Biological Coefficient of Variation taken from
#' and inverse gamma distribution.
#'
#' @param sim SCESet to add BCV means to.
#' @param params SplatParams object with simulation parameters.
#'
#' @return SCESet with simulated BCV means.
#'
#' @importFrom Biobase fData pData assayData assayData<-
#' @importFrom stats rchisq rgamma
splatSimBCVMeans <- function(sim, params) {

    nGenes <- getParam(params, "nGenes")
    nCells <- getParam(params, "nCells")
    bcv.common <- getParam(params, "bcv.common")
    bcv.df <- getParam(params, "bcv.df")
    cell.names <- pData(sim)$Cell
    gene.names <- fData(sim)$Gene
    base.means.cell <- assayData(sim)$BaseCellMeans

    bcv <- (bcv.common + (1 / sqrt(base.means.cell))) *
        sqrt(bcv.df / rchisq(nGenes, df = bcv.df))

    means.cell <- matrix(rgamma(nGenes * nCells, shape = 1 / (bcv ^ 2),
                                scale = base.means.cell * (bcv ^ 2)),
                         nrow = nGenes, ncol = nCells)

    colnames(bcv) <- cell.names
    rownames(bcv) <- gene.names
    colnames(means.cell) <- cell.names
    rownames(means.cell) <- gene.names

    assayData(sim)$BCV <- bcv
    assayData(sim)$CellMeans <- means.cell

    return(sim)
}

#' Simulate true counts
#'
#' Simulate a true counts matrix. Counts are simulated from a poisson
#' distribution where Each gene in each cell has it's own mean based on the
#' group (or path position), expected library size and BCV.
#'
#' @param sim SCESet to add true counts to.
#' @param params SplatParams object with simulation parameters.
#'
#' @return SCESet with simulated true counts.
#'
#' @importFrom Biobase fData pData assayData
#' @importFrom stats rpois
splatSimTrueCounts <- function(sim, params) {

    nGenes <- getParam(params, "nGenes")
    nCells <- getParam(params, "nCells")
    cell.names <- pData(sim)$Cell
    gene.names <- fData(sim)$Gene
    cell.means <- assayData(sim)$CellMeans

    true.counts <- matrix(rpois(nGenes * nCells, lambda = cell.means),
                          nrow = nGenes, ncol = nCells)

    colnames(true.counts) <- cell.names
    rownames(true.counts) <- gene.names

    assayData(sim)$TrueCounts <- true.counts

    return(sim)
}

#' Simulate dropout
#'
#' A logistic function is used to form a relationshop between the expression
#' level of a gene and the probability of dropout, giving a probability for each
#' gene in each cell. These probabilities are used in a Bernoulli distribution
#' to decide which counts should be dropped.
#'
#' @param sim SCESet to add dropout to.
#' @param params SplatParams object with simulation parameters.
#'
#' @return SCESet with simulated dropout and observed counts.
#'
#' @importFrom Biobase fData pData assayData assayData<-
#' @importFrom stats rbinom
splatSimDropout <- function(sim, params) {

    dropout.present <- getParam(params, "dropout.present")
    true.counts <- assayData(sim)$TrueCounts

    if (dropout.present) {
        nCells <- getParam(params, "nCells")
        nGenes <- getParam(params, "nGenes")
        dropout.mid <- getParam(params, "dropout.mid")
        dropout.shape <- getParam(params, "dropout.shape")
        cell.names <- pData(sim)$Cell
        gene.names <- fData(sim)$Gene
        cell.means <- assayData(sim)$CellMeans

        # Generate probabilites based on expression
        lib.sizes <- colSums(true.counts)
        cell.facs <- log(lib.sizes) / median(lib.sizes)
        drop.prob <- sapply(1:nCells, function(idx) {
            eta <- cell.facs[idx] * (log(cell.means[, idx]))
            return(logistic(eta, x0 = dropout.mid, k = dropout.shape))
        })

        # Decide which counts to keep
        keep <- matrix(rbinom(nCells * nGenes, 1, 1 - drop.prob),
                       nrow = nGenes, ncol = nCells)

        counts <- true.counts * keep

        colnames(drop.prob) <- cell.names
        rownames(drop.prob) <- gene.names
        colnames(keep) <- cell.names
        rownames(keep) <- gene.names

        assayData(sim)$DropProb <- drop.prob
        assayData(sim)$Dropout <- !keep

    } else {
        counts <- true.counts
    }

    scater::counts(sim) <- counts

    return(sim)
}

#' Get log-normal factors
#'
#' Randomly generate multiplication factors from a log-normal distribution.
#'
#' @param n.facs Number of factors to generate.
#' @param sel.prob Probability that a factor will be selected to be different
#'        from 1.
#' @param neg.prob Probability that a selected factor is less than one.
#' @param fac.loc Location parameter for the log-normal distribution.
#' @param fac.scale Scale factor for the log-normal distribution.
#'
#' @return Vector containing generated factors.
#'
#' @importFrom stats rbinom rlnorm
getLNormFactors <- function(n.facs, sel.prob, neg.prob, fac.loc, fac.scale) {

    is.selected <- as.logical(rbinom(n.facs, 1, sel.prob))
    n.selected <- sum(is.selected)
    dir.selected <- (-1) ^ rbinom(n.selected, 1, neg.prob)
    facs.selected <- rlnorm(n.selected, fac.loc, fac.scale)
    # Reverse directions for factors that are less than one
    dir.selected[facs.selected < 1 & dir.selected == -1] <- 1
    dir.selected[facs.selected < 1 & dir.selected == 1] <- -1
    factors <- rep(1, n.facs)
    factors[is.selected] <- facs.selected ^ dir.selected

    return(factors)
}

#' Get path order
#'
#' Identify the correct order to process paths so that preceding paths have
#' already been simulated.
#'
#' @param path.from vector giving the path endpoints that each path orginates
#'        from.
#'
#' @return Vector giving the order to process paths in.
getPathOrder <- function(path.from) {

    # Transform the vector into a list of (from, to) pairs
    path.pairs <- list()
    for (idx in 1:length(path.from)) {
        path.pairs[[idx]] <- c(path.from[idx], idx)
    }

    # Determine the processing order
    # If a path is in the "done" vector any path originating here can be
    # completed
    done <- 0
    while (length(path.pairs) > 0) {
        path.pair <- path.pairs[[1]]
        path.pairs <- path.pairs[-1]
        from <- path.pair[1]
        to <- path.pair[2]
        if (from %in% done) {
            done <- c(done, to)
        } else {
            path.pairs <- c(path.pairs, list(path.pair))
        }
    }

    # Remove the origin from the vector
    done <- done[-1]

    return(done)
}

#' Brownian bridge
#'
#' Calculate a smoothed Brownian bridge between two points. A Brownian bridge is
#' a random walk with fixed end points.
#'
#' @param x starting value.
#' @param y end value.
#' @param N number of steps in random walk.
#' @param n number of points in smoothed bridge.
#' @param sigma.fac multiplier specifying how extreme each step can be.
#'
#' @return Vector of length n following a path from x to y.
#'
#' @importFrom stats runif rnorm
bridge <- function (x = 0, y = 0, N = 5, n = 100, sigma.fac = 0.8) {

    dt <- 1 / (N - 1)
    t <- seq(0, 1, length = N)
    sigma2 <- runif(1, 0, sigma.fac * mean(c(x, y)))
    X <- c(0, cumsum(rnorm(N - 1, sd = sigma2) * sqrt(dt)))
    BB <- x + X - t * (X[N] - y + x)
    BB <- akima::aspline(BB, n = n)$y
    BB[BB < 0] <- 0

    return(BB)
}
buildBridges <- Vectorize(bridge, vectorize.args = c("x", "y", "sigma.fac"))