Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
#' Compare SCESet objects
#'
#' Combine the data from several SCESet objects and produce some basic plots
#' comparing them.
#'
#' @param sces named list of SCESet objects to combine and compare.
#' @param point.size size of points in scatter plots.
#' @param point.alpha opacity of points in scatter plots.
#' @param fits whether to include fits in scatter plots.
#' @param colours vector of colours to use for each dataset.
#'
#' @details
#' The returned list has three items:
#'
#' \describe{
#' \item{\code{FeatureData}}{Combined feature data from the provided
#' SCESets.}
#' \item{\code{PhenoData}}{Combined pheno data from the provided SCESets.}
#' \item{\code{Plots}}{Comparison plots
#' \describe{
#' \item{\code{Means}}{Boxplot of mean distribution.}
#' \item{\code{Variances}}{Boxplot of variance distribution.}
#' \item{\code{MeanVar}}{Scatter plot with fitted lines showing the
#' mean-variance relationship.}
#' \item{\code{LibraySizes}}{Boxplot of the library size
#' distribution.}
#' \item{\code{ZerosGene}}{Boxplot of the percentage of each gene
#' that is zero.}
#' \item{\code{ZerosCell}}{Boxplot of the percentage of each cell
#' that is zero.}
#' \item{\code{MeanZeros}}{Scatter plot with fitted lines showing
#' the mean-dropout relationship.}
#' }
#' }
#' }
#'
#' The plots returned by this function are created using
#' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you
#' might like to consider. The data used to create these plots is also returned
#' and should be in the correct format to allow you to create further plots
#' using \code{\link[ggplot2]{ggplot}}.
#'
#' @return List containing the combined datasets and plots.
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, groupCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compareSCESets(list(Splat = sim1, Simple = sim2))
#' names(comparison)
#' names(comparison$Plots)
#' @importFrom ggplot2 ggplot aes_string geom_point geom_smooth geom_boxplot
#' scale_y_continuous scale_y_log10 scale_x_log10 xlab ylab ggtitle
#' theme_minimal scale_colour_manual scale_fill_manual
#' @importFrom scater cpm<-
#' @export
compareSCESets <- function(sces, point.size = 0.1, point.alpha = 0.1,
fits = TRUE, colours = NULL) {
checkmate::assertList(sces, types = "SCESet", any.missing = FALSE,
min.len = 1, names = "unique")
checkmate::assertNumber(point.size, finite = TRUE)
checkmate::assertNumber(point.alpha, lower = 0, upper = 1)
checkmate::assertLogical(fits, any.missing = FALSE, len = 1)
if (!is.null(colours)) {
checkmate::assertCharacter(colours, any.missing = FALSE,
len = length(sces))
} else {
colours <- scales::hue_pal()(length(sces))
}
for (name in names(sces)) {
sce <- sces[[name]]
fData(sce)$Dataset <- name
pData(sce)$Dataset <- name
sce <- scater::calculateQCMetrics(sce)
cpm(sce) <- edgeR::cpm(counts(sce))
sce <- addFeatureStats(sce, "counts")
sce <- addFeatureStats(sce, "cpm")
sce <- addFeatureStats(sce, "cpm", log = TRUE)
sces[[name]] <- sce
}
fData.all <- fData(sces[[1]])
pData.all <- pData(sces[[1]])
if (length(sces) > 1) {
for (name in names(sces)[-1]) {
sce <- sces[[name]]
fData.all <- rbindMatched(fData.all, fData(sce))
pData.all <- rbindMatched(pData.all, pData(sce))
}
}
fData.all$Dataset <- factor(fData.all$Dataset, levels = names(sces))
pData.all$Dataset <- factor(pData.all$Dataset, levels = names(sces))
means <- ggplot(fData.all,
aes_string(x = "Dataset", y = "MeanLogCPM",
colour = "Dataset")) +
#geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(expression(paste("Mean ", log[2], "(CPM + 1)"))) +
ggtitle("Distribution of mean expression") +
theme_minimal()
vars <- ggplot(fData.all,
aes_string(x = "Dataset", y = "VarLogCPM",
colour = "Dataset")) +
#geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) +
ggtitle("Distribution of variance") +
theme_minimal()
mean.var <- ggplot(fData.all,
aes_string(x = "MeanLogCPM", y = "VarLogCPM",
colour = "Dataset", fill = "Dataset")) +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab(expression(paste("Mean ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) +
ggtitle("Mean-variance relationship") +
theme_minimal()
libs <- ggplot(pData.all,
aes_string(x = "Dataset", y = "total_counts",
colour = "Dataset")) +
geom_boxplot() +
scale_y_continuous(labels = scales::comma) +
scale_colour_manual(values = colours) +
ylab("Total counts per cell") +
ggtitle("Distribution of library sizes") +
theme_minimal()
z.gene <- ggplot(fData.all,
aes_string(x = "Dataset", y = "pct_dropout",
colour = "Dataset")) +
geom_boxplot() +
scale_y_continuous(limits = c(0, 100)) +
scale_colour_manual(values = colours) +
ylab("Percentage zeros per gene") +
ggtitle("Distribution of zeros per gene") +
theme_minimal()
z.cell <- ggplot(pData.all,
aes_string(x = "Dataset", y = "pct_dropout",
colour = "Dataset")) +
geom_boxplot() +
scale_y_continuous(limits = c(0, 100)) +
scale_colour_manual(values = colours) +
ylab("Percentage zeros per cell") +
ggtitle("Distribution of zeros per cell") +
theme_minimal()
mean.zeros <- ggplot(fData.all,
aes_string(x = "MeanCounts", y = "pct_dropout",
colour = "Dataset", fill = "Dataset")) +
geom_point(size = point.size, alpha = point.alpha) +
scale_x_log10(labels = scales::comma) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab("Mean count") +
ylab("Percentage zeros") +
ggtitle("Mean-dropout relationship") +
theme_minimal()
if (fits) {
mean.var <- mean.var + geom_smooth()
mean.zeros <- mean.zeros + geom_smooth()
}
comparison <- list(FeatureData = fData.all,
PhenoData = pData.all,
Plots = list(Means = means,
Variances = vars,
MeanVar = mean.var,
LibrarySizes = libs,
ZerosGene = z.gene,
ZerosCell = z.cell,
MeanZeros = mean.zeros))
return(comparison)
}
#' Diff SCESet objects
#'
#' Combine the data from several SCESet objects and produce some basic plots
#' comparing them to a reference.
#'
#' @param sces named list of SCESet objects to combine and compare.
#' @param ref string giving the name of the SCESet to use as the reference
#' @param point.size size of points in scatter plots.
#' @param point.alpha opacity of points in scatter plots.
#' @param fits whether to include fits in scatter plots.
#' @param colours vector of colours to use for each dataset.
#'
#' @details
#'
#' This function aims to look at the differences between a reference SCESet and
#' one or more others. It requires each SCESet to have the same dimensions.
#' Properties are compared by ranks, for example when comparing the means the
#' values are ordered and the differences between the reference and another
#' dataset plotted. A series of Q-Q plots are also returned.
#'
#' The returned list has five items:
#'
#' \describe{
#' \item{\code{Reference}}{The SCESet used as the reference.}
#' \item{\code{FeatureData}}{Combined feature data from the provided
#' SCESets.}
#' \item{\code{PhenoData}}{Combined pheno data from the provided SCESets.}
#' \item{\code{Plots}}{Difference plots
#' \describe{
#' \item{\code{Means}}{Boxplot of mean differences.}
#' \item{\code{Variances}}{Boxplot of variance differences.}
#' \item{\code{MeanVar}}{Scatter plot showing the difference from
#' the reference variance across expression ranks.}
#' \item{\code{LibraySizes}}{Boxplot of the library size
#' differences.}
#' \item{\code{ZerosGene}}{Boxplot of the differences in the
#' percentage of each gene that is zero.}
#' \item{\code{ZerosCell}}{Boxplot of the differences in the
#' percentage of each cell that is zero.}
#' \item{\code{MeanZeros}}{Scatter plot showing the difference from
#' the reference percentage of zeros across expression ranks.}
#' }
#' }
#' \item{\code{QQPlots}}{Quantile-Quantile plots
#' \describe{
#' \item{\code{Means}}{Q-Q plot of the means.}
#' \item{\code{Variances}}{Q-Q plot of the variances.}
#' \item{\code{LibrarySizes}}{Q-Q plot of the library sizes.}
#' \item{\code{ZerosGene}}{Q-Q plot of the percentage of zeros per
#' gene.}
#' \item{\code{ZerosCell}}{Q-Q plot of the percentage of zeros per
#' cell.}
#' }
#' }
#' }
#'
#' The plots returned by this function are created using
#' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you
#' might like to consider. The data used to create these plots is also returned
#' and should be in the correct format to allow you to create further plots
#' using \code{\link[ggplot2]{ggplot}}.
#'
#' @return List containing the combined datasets and plots.
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, groupCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCESets(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' names(difference)
#' names(difference$Plots)
#' @importFrom ggplot2 ggplot aes_string geom_point geom_boxplot xlab ylab
#' ggtitle theme_minimal geom_hline geom_abline scale_colour_manual
#' scale_fill_manual
#' @importFrom scater cpm<-
#' @export
diffSCESets <- function(sces, ref, point.size = 0.1, point.alpha = 0.1,
fits = TRUE, colours = NULL) {
checkmate::assertList(sces, types = "SCESet", any.missing = FALSE,
min.len = 2, names = "unique")
checkmate::assertString(ref)
checkmate::assertNumber(point.size, finite = TRUE)
checkmate::assertNumber(point.alpha, lower = 0, upper = 1)
checkmate::assertLogical(fits, any.missing = FALSE, len = 1)
if (!(ref %in% names(sces))) {
stop("'ref' must be the name of an SCESet in 'sces'")
}
if (!is.null(colours)) {
checkmate::assertCharacter(colours, any.missing = FALSE,
len = length(sces) - 1)
} else {
colours <- scales::hue_pal()(length(sces))
}
ref.dim <- dim(sces[[ref]])
for (name in names(sces)) {
sce <- sces[[name]]
if (!identical(dim(sce), ref.dim)) {
stop("SCESets must have the same dimensions")
}
fData(sce)$Dataset <- name
pData(sce)$Dataset <- name
sce <- scater::calculateQCMetrics(sce)
cpm(sce) <- edgeR::cpm(counts(sce))
sce <- addFeatureStats(sce, "counts")
sce <- addFeatureStats(sce, "cpm", log = TRUE)
sces[[name]] <- sce
}
ref.sce <- sces[[ref]]
ref.means <- sort(fData(ref.sce)$MeanLogCPM)
ref.vars <- sort(fData(ref.sce)$VarLogCPM)
ref.libs <- sort(pData(ref.sce)$total_counts)
ref.z.gene <- sort(fData(ref.sce)$pct_dropout)
ref.z.cell <- sort(pData(ref.sce)$pct_dropout)
ref.rank.ord <- order(fData(ref.sce)$exprs_rank)
ref.vars.rank <- fData(ref.sce)$VarLogCPM[ref.rank.ord]
ref.z.gene.rank <- fData(ref.sce)$pct_dropout[ref.rank.ord]
for (name in names(sces)) {
sce <- sces[[name]]
fData(sce)$RefRankMeanLogCPM <- ref.means[rank(fData(sce)$MeanLogCPM)]
fData(sce)$RankDiffMeanLogCPM <- fData(sce)$MeanLogCPM -
fData(sce)$RefRankMeanLogCPM
fData(sce)$RefRankVarLogCPM <- ref.vars[rank(fData(sce)$VarLogCPM)]
fData(sce)$RankDiffVarLogCPM <- fData(sce)$VarLogCPM -
fData(sce)$RefRankVarLogCPM
pData(sce)$RefRankLibSize <- ref.libs[rank(pData(sce)$total_counts)]
pData(sce)$RankDiffLibSize <- pData(sce)$total_counts -
pData(sce)$RefRankLibSize
fData(sce)$RefRankZeros <- ref.z.gene[rank(fData(sce)$pct_dropout)]
fData(sce)$RankDiffZeros <- fData(sce)$pct_dropout -
fData(sce)$RefRankZeros
pData(sce)$RefRankZeros <- ref.z.cell[rank(pData(sce)$pct_dropout)]
pData(sce)$RankDiffZeros <- pData(sce)$pct_dropout -
pData(sce)$RefRankZeros
fData(sce)$MeanRankVarDiff <- fData(sce)$VarLogCPM -
ref.vars.rank[fData(sce)$exprs_rank]
fData(sce)$MeanRankZerosDiff <- fData(sce)$pct_dropout -
ref.z.gene.rank[fData(sce)$exprs_rank]
sces[[name]] <- sce
}
ref.sce <- sces[[ref]]
sces[[ref]] <- NULL
fData.all <- fData(sces[[1]])
pData.all <- pData(sces[[1]])
if (length(sces) > 1) {
for (name in names(sces)[-1]) {
sce <- sces[[name]]
fData.all <- rbindMatched(fData.all, fData(sce))
pData.all <- rbindMatched(pData.all, pData(sce))
}
}
fData.all$Dataset <- factor(fData.all$Dataset, levels = names(sces))
pData.all$Dataset <- factor(pData.all$Dataset, levels = names(sces))
means <- ggplot(fData.all,
aes_string(x = "Dataset", y = "RankDiffMeanLogCPM",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(expression(paste("Rank difference mean ", log[2], "(CPM + 1)"))) +
ggtitle("Difference in mean expression") +
theme_minimal()
vars <- ggplot(fData.all,
aes_string(x = "Dataset", y = "RankDiffVarLogCPM",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(expression(paste("Rank difference variance ", log[2],
"(CPM + 1)"))) +
ggtitle("Difference in variance") +
theme_minimal()
mean.var <- ggplot(fData.all,
aes_string(x = "exprs_rank", y = "MeanRankVarDiff",
colour = "Dataset", fill = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab("Expression rank") +
ylab(expression(paste("Difference in variance ", log[2],
"(CPM + 1)"))) +
ggtitle("Difference in mean-variance relationship") +
theme_minimal()
libs <- ggplot(pData.all,
aes_string(x = "Dataset", y = "RankDiffLibSize",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(paste("Rank difference libray size")) +
ggtitle("Difference in library sizes") +
theme_minimal()
z.gene <- ggplot(fData.all,
aes_string(x = "Dataset", y = "RankDiffZeros",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_y_continuous(limits = c(0, 100)) +
scale_colour_manual(values = colours) +
ylab(paste("Rank difference percentage zeros")) +
ggtitle("Difference in zeros per gene") +
theme_minimal()
z.cell <- ggplot(pData.all,
aes_string(x = "Dataset", y = "RankDiffZeros",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_y_continuous(limits = c(0, 100)) +
scale_colour_manual(values = colours) +
ylab(paste("Rank difference percentage zeros")) +
ggtitle("Difference in zeros per cell") +
theme_minimal()
mean.zeros <- ggplot(fData.all,
aes_string(x = "exprs_rank", y = "MeanRankZerosDiff",
colour = "Dataset", fill = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab("Expression rank") +
ylab("Difference in percentage zeros per gene") +
ggtitle("Difference in mean-zeros relationship") +
theme_minimal()
means.qq <- ggplot(fData.all,
aes_string(x = "RefRankMeanLogCPM", y = "MeanLogCPM",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab(expression(paste("Reference mean ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Alternative mean ", log[2], "(CPM + 1)"))) +
ggtitle("Ranked means") +
theme_minimal()
vars.qq <- ggplot(fData.all,
aes_string(x = "RefRankVarLogCPM", y = "VarLogCPM",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab(expression(paste("Reference variance ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Alternative variance ", log[2], "(CPM + 1)"))) +
ggtitle("Ranked variances") +
theme_minimal()
libs.qq <- ggplot(pData.all,
aes_string(x = "RefRankLibSize", y = "total_counts",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab("Reference library size") +
ylab("Alternative library size") +
ggtitle("Ranked library sizes") +
theme_minimal()
z.gene.qq <- ggplot(fData.all,
aes_string(x = "RefRankZeros", y = "pct_dropout",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab("Reference percentage zeros") +
ylab("Alternative percentage zeros") +
ggtitle("Ranked percentage zeros per gene") +
theme_minimal()
z.cell.qq <- ggplot(pData.all,
aes_string(x = "RefRankZeros", y = "pct_dropout",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab("Reference percentage zeros") +
ylab("Alternative percentage zeros") +
ggtitle("Ranked percentage zeros per cell") +
theme_minimal()
if (fits) {
mean.var <- mean.var + geom_smooth()
mean.zeros <- mean.zeros + geom_smooth()
}
comparison <- list(Reference = ref.sce,
FeatureData = fData.all,
PhenoData = pData.all,
Plots = list(Means = means,
Variances = vars,
MeanVar = mean.var,
LibrarySizes = libs,
ZerosGene = z.gene,
ZerosCell = z.cell,
MeanZeros = mean.zeros),
QQPlots = list(Means = means.qq,
Variances = vars.qq,
LibrarySizes = libs.qq,
ZerosGene = z.gene.qq,
ZerosCell = z.cell.qq))
return(comparison)
}
#' Make comparison panel
#'
#' Combine the plots from \code{compareSCESets} into a single panel.
#'
#' @param comp list returned by \code{\link{compareSCESets}}.
#' @param title title for the panel.
#' @param labels vector of labels for each of the seven plots.
#'
#' @return Combined panel plot
#'
#' @examples
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, groupCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compareSCESets(list(Splat = sim1, Simple = sim2))
#' panel <- makeCompPanel(comparison)
#' }
#'
#' @importFrom ggplot2 theme element_blank
#' @export
makeCompPanel <- function(comp, title = "Comparison",
labels = c("Means", "Variance",
"Mean-variance relationship",
"Library size", "Zeros per gene",
"Zeros per cell",
"Mean-zeros relationship")) {
if (!requireNamespace("cowplot", quietly = TRUE)) {
stop("The `cowplot` package is required to make panels.")
}
checkmate::assertList(comp, any.missing = FALSE, len = 3)
checkmate::checkString(title)
checkmate::checkCharacter(labels, len = 7)
plots <- list(p1 = comp$Plots$Means, p2 = comp$Plots$Variances,
p3 = comp$Plots$MeanVar, p4 = comp$Plots$LibrarySizes,
p5 = comp$Plots$ZerosGene, p6 = comp$Plots$ZerosCell,
p7 = comp$Plots$MeanZeros)
# Remove titles and legends
for (plot in names(plots)) {
plots[[plot]] <- plots[[plot]] + theme(legend.position = "none",
plot.title = element_blank())
}
# Remove x-axis title from some plots
for (plot in paste0("p", c(1, 2, 4, 5, 6))) {
plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank())
}
plots$leg <- cowplot::get_legend(plots$p1 +
theme(legend.position = "bottom"))
panel <- cowplot::ggdraw() +
cowplot::draw_label(title, 0.5, 0.98,
fontface = "bold", size = 18) +
cowplot::draw_label(labels[1], 0.01, 0.95,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p1, 0.0, 0.74, 0.5, 0.20) +
cowplot::draw_label(labels[2], 0.51, 0.95,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p2, 0.5, 0.74, 0.5, 0.20) +
cowplot::draw_label(labels[3], 0.01, 0.70,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p3, 0.0, 0.49, 0.5, 0.20) +
cowplot::draw_label(labels[4], 0.51, 0.70,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p4, 0.5, 0.49, 0.5, 0.20) +
cowplot::draw_label(labels[5], 0.01, 0.45,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p5, 0.0, 0.24, 0.5, 0.20) +
cowplot::draw_label(labels[6], 0.51, 0.45,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p6, 0.5, 0.24, 0.5, 0.20) +
cowplot::draw_label(labels[7], 0.01, 0.21,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p7, 0.0, 0.00, 0.5, 0.20) +
cowplot::draw_plot(plots$leg, 0.5, 0.00, 0.5, 0.20)
return(panel)
}
#' Make difference panel
#'
#' Combine the plots from \code{diffSCESets} into a single panel.
#'
#' @param diff list returned by \code{\link{diffSCESets}}.
#' @param title title for the panel.
#' @param labels vector of labels for each of the seven sections.
#'
#' @return Combined panel plot
#'
#' @examples
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, groupCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCESets(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' panel <- makeDiffPanel(difference)
#' }
#'
#' @importFrom ggplot2 theme element_blank
#' @export
makeDiffPanel <- function(diff, title = "Difference comparison",
labels = c("Means", "Variance", "Library size",
"Zeros per cell", "Zeros per gene",
"Mean-variance relationship",
"Mean-zeros relationship")) {
if (!requireNamespace("cowplot", quietly = TRUE)) {
stop("The `cowplot` package is required to make panels.")
}
checkmate::assertList(diff, any.missing = FALSE, len = 5)
checkmate::checkString(title)
checkmate::checkCharacter(labels, len = 7)
plots <- list(p1 = diff$Plots$Means, p2 = diff$QQPlots$Means,
p3 = diff$Plots$Variances, p4 = diff$QQPlots$Variances,
p5 = diff$Plots$MeanVar, p6 = diff$Plots$LibrarySizes,
p7 = diff$QQPlots$LibrarySizes, p8 = diff$Plots$ZerosCell,
p9 = diff$QQPlots$ZerosCell, p10 = diff$Plots$ZerosGene,
p11 = diff$QQPlots$ZerosGene, p12 = diff$Plots$MeanZeros)
# Remove titles and legends
for (plot in names(plots)) {
plots[[plot]] <- plots[[plot]] + theme(legend.position = "none",
plot.title = element_blank())
}
# Remove x-axis title from some plots
for (plot in paste0("p", c(1, 3, 6, 8, 10))) {
plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank())
}
plots$leg <- cowplot::get_legend(plots$p1 +
theme(legend.position = "bottom"))
panel <- cowplot::ggdraw() +
cowplot::draw_label(title, 0.5, 0.98,
fontface = "bold", size = 18) +
cowplot::draw_label(labels[1], 0.0, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p1, 0.0, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p2, 0.0, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[2], 0.21, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p3, 0.21, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p4, 0.21, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[6], 0.0, 0.30,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p5, 0.0, 0.0, 0.38, 0.29) +
cowplot::draw_label(labels[3], 0.41, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p6, 0.41, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p7, 0.41, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[4], 0.61, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p8, 0.61, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p9, 0.61, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[7], 0.41, 0.30,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p12, 0.41, 0.0, 0.38, 0.29) +
cowplot::draw_label(labels[5], 0.81, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p10, 0.81, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p11, 0.81, 0.32, 0.18, 0.29) +
cowplot::draw_plot(plots$leg, 0.81, 0.0, 0.2, 0.29)
return(panel)
}
#' Make overall panel
#'
#' Combine the plots from \code{compSCESets} and \code{diffSCESets} into a
#' single panel.
#'
#' @param comp list returned by \code{\link{compareSCESets}}.
#' @param diff list returned by \code{\link{diffSCESets}}.
#' @param title title for the panel.
#' @param row.labels vector of labels for each of the seven rows.
#'
#' @return Combined panel plot
#'
#' @examples
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, groupCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compSCESets(list(Splat = sim1, Simple = sim2))
#' difference <- diffSCESets(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' panel <- makeOverallPanel(comparison, difference)
#' }
#'
#' @importFrom ggplot2 theme element_blank
#' @export
makeOverallPanel <- function(comp, diff, title = "Overall comparison",
row.labels = c("Means", "Variance",
"Mean-variance relationship",
"Library size", "Zeros per cell",
"Zeros per gene",
"Mean-zeros relationship")) {
if (!requireNamespace("cowplot", quietly = TRUE)) {
stop("The `cowplot` package is required to make panels.")
}
checkmate::assertList(comp, any.missing = FALSE, len = 3)
checkmate::assertList(diff, any.missing = FALSE, len = 5)
checkmate::checkString(title)
checkmate::checkCharacter(row.labels, len = 7)
plots <- list(p1 = comp$Plots$Means, p2 = diff$Plots$Means,
p3 = diff$QQPlots$Means, p4 = comp$Plots$Variances,
p5 = diff$Plots$Variances, p6 = diff$QQPlots$Variances,
p7 = comp$Plots$MeanVar, p8 = diff$Plots$MeanVar,
p9 = comp$Plots$LibrarySizes, p10 = diff$Plots$LibrarySizes,
p11 = diff$QQPlots$LibrarySizes, p12 = comp$Plots$ZerosCell,
p13 = diff$Plots$ZerosCell, p14 = diff$QQPlots$ZerosCell,
p15 = comp$Plots$ZerosGene, p16 = diff$Plots$ZerosGene,
p17 = diff$QQPlots$ZerosGene, p18 = comp$Plots$MeanZeros,
p19 = diff$Plots$MeanZeros)
# Remove titles and legends
for (plot in names(plots)) {
plots[[plot]] <- plots[[plot]] + theme(legend.position = "none",
plot.title = element_blank())
}
# Remove x-axis title from some plots
for (plot in paste0("p", c(1, 2, 4, 5, 9, 10, 12, 13, 15, 16))) {
plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank())
}
plots$leg <- cowplot::get_legend(plots$p1 +
theme(legend.position = "bottom"))
panel <- cowplot::ggdraw() +
cowplot::draw_label(title, 0.5, 0.995,
fontface = "bold", size = 18) +
cowplot::draw_label(row.labels[1], 0.01, 0.985,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p1, 0.00, 0.86, 0.32, 0.12) +
cowplot::draw_plot(plots$p2, 0.34, 0.86, 0.32, 0.12) +
cowplot::draw_plot(plots$p3, 0.67, 0.86, 0.32, 0.12) +
cowplot::draw_label(row.labels[2], 0.01, 0.845,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p4, 0.00, 0.72, 0.32, 0.12) +
cowplot::draw_plot(plots$p5, 0.34, 0.72, 0.32, 0.12) +
cowplot::draw_plot(plots$p6, 0.67, 0.72, 0.32, 0.12) +
cowplot::draw_label(row.labels[3], 0.01, 0.705,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p7, 0.00, 0.58, 0.49, 0.12) +
cowplot::draw_plot(plots$p8, 0.51, 0.58, 0.49, 0.12) +
cowplot::draw_label(row.labels[4], 0.01, 0.56,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p9, 0.00, 0.44, 0.32, 0.12) +
cowplot::draw_plot(plots$p10, 0.34, 0.44, 0.32, 0.12) +
cowplot::draw_plot(plots$p11, 0.67, 0.44, 0.32, 0.12) +
cowplot::draw_label(row.labels[5], 0.01, 0.425,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p12, 0.00, 0.30, 0.32, 0.12) +
cowplot::draw_plot(plots$p13, 0.34, 0.30, 0.32, 0.12) +
cowplot::draw_plot(plots$p14, 0.67, 0.30, 0.32, 0.12) +
cowplot::draw_label(row.labels[6], 0.01, 0.285,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p15, 0.00, 0.16, 0.32, 0.12) +
cowplot::draw_plot(plots$p16, 0.34, 0.16, 0.32, 0.12) +
cowplot::draw_plot(plots$p17, 0.67, 0.16, 0.32, 0.12) +
cowplot::draw_label(row.labels[7], 0.01, 0.145,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p18, 0.00, 0.02, 0.49, 0.12) +
cowplot::draw_plot(plots$p19, 0.51, 0.02, 0.49, 0.12) +
cowplot::draw_plot(plots$leg, 0.00, 0.00, 1.00, 0.02)
return(panel)
}
#' Summarise diffSCESets
#'
#' Summarise the results of \code{\link{diffSCESets}}. The various
#' properties are sorted, differences calculated, the Median Absolute Deviation
#' taken as the summary statistic and the ranks calculated.
#'
#' @param diff Output from \code{\link{diffSCESets}}
#'
#' @return List with MADs, ranks and both combined in long format
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, groupCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCESets(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' summary <- summariseDiff(difference)
#' names(summary)
#' head(summary$Long)
#' @export
summariseDiff <- function(diff) {
datasets <- unique(diff$PhenoData$Dataset)
fData.mads <- sapply(datasets, function(dataset) {
df <- diff$FeatureData[diff$FeatureData$Dataset == dataset, ]
mean <- median(abs(df$RankDiffMeanLogCPM))
var <- median(abs(df$RankDiffVarLogCPM))
zeros <- median(abs(df$RankDiffZeros))
mean.var <- median(abs(df$MeanRankVarDiff))
mean.zeros <- median(abs(df$MeanRankZerosDiff))
return(c(Mean = mean, Variance = var, ZerosGene = zeros,
MeanVar = mean.var, MeanZeros = mean.zeros))
})
pData.mads <- sapply(datasets, function(dataset) {
df <- diff$PhenoData[diff$PhenoData$Dataset == dataset, ]
lib.size <- median(abs(df$RankDiffLibSize))
zeros <- median(abs(df$RankDiffZeros))
return(c(LibSize = lib.size, ZerosCell = zeros))
})
mads <- data.frame(Dataset = datasets, t(fData.mads), t(pData.mads))
fData.ranks <- matrixStats::rowRanks(fData.mads)
pData.ranks <- matrixStats::rowRanks(pData.mads)
ranks <- data.frame(Dataset = datasets, t(fData.ranks), t(pData.ranks))
colnames(ranks) <- paste0(colnames(mads), "Rank")
mads.long <- stats::reshape(mads, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(mads)[2:8], v.names = "MAD")
ranks.long <- stats::reshape(ranks, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(ranks)[2:8], v.names = "Rank")
long <- data.frame(mads.long, Rank = ranks.long$Rank)
row.names(long) <- NULL
summary <- list(MADs = mads, Ranks = ranks, Long = long)
return(summary)
}