Newer
Older
#' Extract information of local and weekly estimates from simulation
#'
#'
#' @param sim An \code{icm} object returned by \link{simulate_seiqhrf}.
#' @param market.share between 0 and 1, percentage of local hospital beds in
#' the simulated unit (e.g. state)
#' @param icu_percent between 0 and 1, percentage of patients that should go to
#' ICU among the ones that need hospitalization
#' @param start_date Epidemic start date. Default is 'na', if not provided will
#' plot week numbers, if provided will plot the first day (Sunday) of the
#' week.
#' @param time_limit Number of days to include. Default = 90.
#' @param total_population True population size, needed only if simulation size
#' is smaller than the true population size due to computational cost
#' \item \code{plot:} A \code{ggplot} object, bar charts of count of patients
#' requiring hospitalization and ICU respectively
#' \itemize{\item \code{week:} week number from input \code{sim},
#' \item \code{hosp:} the number of patients that require hospitalization locally,
#' \item \code{icu:} the number of patients that require ICU locally. }
#'
get_weekly_local <- function(sim,
market.share = .04,
icu_percent = .1,
start_date = 'na',
hosp <- sim$df$h.num
if(!is.null(total_population)){
if(total_population < max(sim$df$s.num))
stop("total Population should be larger than simulated size")
cat("Scalling w.r.t total population")
hosp <- hosp*total_population/max(sim$df$s.num)
}
if(market.share < 0 || market.share > 1) stop("Market share has to be between
0 and 1")
if(icu_percent < 0 || icu_percent > 1) stop("ICU percentage has to be between
0 and 1")
hosp_week <- split(hosp, ceiling(seq_along(hosp)/7))
hosp_sum_week <- unlist(lapply(hosp_week, sum))
t_sz <- length(hosp_sum_week)
hosp_wk_df <- data.frame(wk = rep(seq_along(hosp_sum_week), 2),
group = rep(c("general", "icu"),
each = t_sz),
hosp_icu = c(hosp_sum_week -
(hosp_sum_week*icu_percent),
hosp_sum_week*icu_percent))
if(class(start_date) == 'Date'){
hosp_wk_df <- data.frame(append(hosp_wk_df,
list(Date=start_date +
(7 * (hosp_wk_df$wk - 1))),
after=match("wk", names(hosp_wk_df))))
gg <- ggplot(data=hosp_wk_df, aes(x = Date, y = hosp_icu, fill = group)) +
geom_bar(stat="identity") + theme_bw() +
scale_x_date(date_breaks = "1 week", date_labels = "%m-%d") +
labs(y="Weekly Hospital Load (sum over week)", x = "Week")
gg <- ggplot(data=hosp_wk_df, aes(x = wk, y = hosp_icu, fill = group)) +
geom_bar(stat="identity") + theme_bw() +
labs(y="Weekly Hospital Load (sum over week)", x = "Week") +
scale_x_continuous(breaks = seq(0,t_sz,5), labels= seq(0,t_sz,5))
}
res <- hosp_wk_df %>% tidyr::pivot_wider(names_from = group, values_from = hosp_icu)
return(list("plot" = gg, "result" = res))