Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
MAGE_2020_Marker-Gene-Benchmarking
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
BioCellGen-public
MAGE_2020_Marker-Gene-Benchmarking
Commits
5eb4b4c2
Commit
5eb4b4c2
authored
4 years ago
by
Jeffrey Pullin
Browse files
Options
Downloads
Patches
Plain Diff
Add initial analysis of FDR curves
parent
33746c69
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
fdr-curves.Rmd
+238
-0
238 additions, 0 deletions
fdr-curves.Rmd
with
238 additions
and
0 deletions
fdr-curves.Rmd
0 → 100644
+
238
−
0
View file @
5eb4b4c2
---
title: "FDR curves"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r libraries, message = FALSE, warning = FALSE}
library(tibble)
library(dplyr)
library(ggplot2)
library(tidyr)
library(SingleCellExperiment)
library(pals)
library(forcats)
library(viridis)
```
```{r functions}
source(here::here("code", "top-genes.R"))
source(here::here("code", "find-marker-genes.R"))
source(here::here("code", "analysis-utils.R"))
get_top_true_mgs <- function(mgs, n = "all") {
# FIXME: This sorts only on the fold change which is not ideal for
# semi-unique marker genes
mgs <- mgs[order(mgs$fc, decreasing = TRUE), ]
if (n == "all") {
n <- nrow(mgs)
}
mgs[1:n, ]
}
get_top_sel_mgs <- function(mgs, n = "all") {
if ("top" %in% colnames(mgs)) {
# scran any
# FIXME: Does this matter?
mgs <- mgs[order(mgs$top, mgs$p_value), ]
} else if (all(is.na(mgs$p_value))) {
# Seurat ROC -> no p values!
mgs <- mgs[order(mgs$score, decreasing = TRUE), ]
} else {
mgs <- mgs[order(mgs$p_value), ]
}
if (n == "all") {
n <- nrow(mgs)
}
mgs[1:n, ]
}
#' Calculate the true positive rate
#'
#' @param found The marker genes found.
#' @param true The true marker genes.
#'
#' @return The true positive rate
#'
calculate_tpr <- function(found, true) {
stopifnot(is.vector(found) && is.vector(true))
n_tp <- length(base::intersect(found, true))
n <- length(found)
n_tp / n
}
```
## Aim
To investigate the FDR and TPR performance of the different methods
## Data loading
```{r calculate-fdr}
config <- yaml::read_yaml(here::here("config.yaml"))
res_paths <- here::here(list.files(config$results_folder, full.names = TRUE))
sim_paths <- here::here(list.files(config$sim_data_folder, full.names = TRUE))
# SLOW!
umgs <- list()
sumgs <- list()
for (i in seq_along(sim_paths)) {
print(i)
sim <- readRDS(sim_paths[[i]])
umgs[[i]] <- find_unique_marker_genes(sim)
sumgs[[i]] <- find_semi_unique_marker_genes(sim)
rm(sim)
}
sim_names <- substr(basename(sim_paths), 1, nchar(basename(sim_paths)) - 4)
mgs <- tibble(sim_name = sim_names, umg = umgs, sumg = sumgs)
sel_genes <- list()
for (i in seq_along(res_paths)) {
print(i)
res <- readRDS(res_paths[[i]])
# Some (DESeq2 runs lead to convergence issues.)
if (!(length(res$result) == 0)) {
# We select 700 as there are never more than around 650 true marker genes.
sel_genes[[i]] <- reformat_found_mgs(res, top_n = 700)
}
rm(res)
}
res_names <- substr(basename(res_paths), 1, nchar(basename(res_paths)) - 4)
selected_genes <- tibble(res_name = res_names, sel_genes = sel_genes)
pars <- retrive_simulation_parameters() %>%
mutate(res_name = substr(file_name, 1, nchar(file_name) - 4)) %>%
left_join(mgs, by = "sim_name") %>%
left_join(selected_genes, by = "res_name")
pars <- pars %>%
pivot_longer(cols = c(umg, sumg),
names_to = "mg_type",
values_to = "mgs")
metrics_data <- pars %>%
mutate(clusters = if_else(sim_label == "prop", list(1), list(NULL))) %>%
dplyr::rename(sel_mgs = sel_genes, true_mgs = mgs) %>%
rowwise() %>%
mutate(group_id = list(names(true_mgs))) %>%
unchop(c(sel_mgs, true_mgs, group_id))
```
```{r}
metrics_data %>%
filter(sim_label == "standard_sim" & mg_type == "umg") %>%
expand_grid(n_sel = 1:40, n_true = c(100, 200, 700)) %>%
rowwise() %>%
mutate(
true_mgs = list(get_top_true_mgs(true_mgs, n = n_true)),
sel_mgs = list(get_top_sel_mgs(sel_mgs, n = n_sel)),
tpr = calculate_tpr(sel_mgs$gene, true_mgs$gene),
fdr = 1 - tpr
) %>%
ungroup() %>%
group_by(pars, n_sel, n_true) %>%
summarise(fdr = mean(fdr), .groups = "drop") %>%
ggplot(aes(x = n_sel, y = fdr, colour = pars)) +
geom_line() +
facet_wrap(~n_true) +
scale_colour_manual(values = unname(polychrome(20))) +
labs(
x = "Number of genes selected",
y = "Number of false discoveries",
colour = "Method"
) +
theme_bw()
```
```{r}
metrics_data %>%
filter(sim_label == "standard_sim" & mg_type == "umg") %>%
expand_grid(n_sel = 1:10, n_true = c(100, 200, 700)) %>%
rowwise() %>%
mutate(
true_mgs = list(get_top_true_mgs(true_mgs, n = n_true)),
sel_mgs = list(get_top_sel_mgs(sel_mgs, n = n_sel)),
tpr = calculate_tpr(sel_mgs$gene, true_mgs$gene),
fdr = 1 - tpr
) %>%
ungroup() %>%
group_by(pars, n_sel, n_true) %>%
summarise(fdr = mean(fdr), .groups = "drop") %>%
ggplot(aes(x = n_sel, y = fdr, colour = pars)) +
geom_line() +
facet_wrap(~n_true) +
scale_colour_manual(values = unname(polychrome(20))) +
labs(
x = "Number of genes selected",
y = "Number of false discoveries",
colour = "Method"
) +
theme_bw()
```
```{r}
metrics_data %>%
filter(sim_label == "standard_sim" & mg_type == "umg") %>%
expand_grid(n_sel = c(20, 100, 200), n_true = 1:200) %>%
rowwise() %>%
mutate(
true_mgs = list(get_top_true_mgs(true_mgs, n = n_true)),
sel_mgs = list(get_top_sel_mgs(sel_mgs, n = n_sel)),
tpr = calculate_tpr(sel_mgs$gene, true_mgs$gene),
fdr = 1 - tpr
) %>%
ungroup() %>%
group_by(pars, n_sel, n_true) %>%
summarise(fdr = mean(fdr), .groups = "drop") %>%
ggplot(aes(x = n_true, y = fdr, colour = pars)) +
geom_line() +
facet_wrap(~n_sel) +
coord_cartesian(ylim = c(0, 1)) +
scale_colour_manual(values = unname(polychrome(20))) +
labs(
x = "Number of true genes",
y = "Number of false discoveries",
colour = "Method"
) +
theme_bw()
```
```{r}
metrics_data %>%
filter(sim_label == "num_cells" & mg_type == "umg") %>%
expand_grid(n_sel = 1:20, n_true = 100) %>%
rowwise() %>%
filter(!is.null(sel_mgs)) %>%
mutate(
true_mgs = list(get_top_true_mgs(true_mgs, n = n_true)),
sel_mgs = list(get_top_sel_mgs(sel_mgs, n = n_sel)),
tpr = calculate_tpr(sel_mgs$gene, true_mgs$gene),
fdr = 1 - tpr
) %>%
ungroup() %>%
group_by(pars, n_sel, n_true, batchCells) %>%
summarise(fdr = mean(fdr), .groups = "drop") %>%
ggplot(aes(x = n_sel, y = fdr, colour = pars)) +
geom_line() +
facet_wrap(~batchCells) +
scale_colour_manual(values = unname(polychrome(20))) +
labs(
x = "Number of genes selected",
y = "Number of false discoveries",
colour = "Method"
) +
theme_bw()
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment