Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
MAGE_2020_Marker-Gene-Benchmarking
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
BioCellGen-public
MAGE_2020_Marker-Gene-Benchmarking
Commits
257749a2
Commit
257749a2
authored
3 years ago
by
Jeffrey Pullin
Browse files
Options
Downloads
Patches
Plain Diff
Add CITE-seq dataset
parent
22d56804
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
code/download-raw-data.R
+46
-0
46 additions, 0 deletions
code/download-raw-data.R
code/prep-citeseq.R
+31
-0
31 additions, 0 deletions
code/prep-citeseq.R
config.yaml
+1
-0
1 addition, 0 deletions
config.yaml
with
78 additions
and
0 deletions
code/download-raw-data.R
+
46
−
0
View file @
257749a2
...
...
@@ -11,6 +11,7 @@ suppressMessages({
library
(
SingleCellExperiment
)
library
(
readr
)
library
(
dplyr
)
library
(
Seurat
)
})
raw_lawlor
<-
LawlorPancreasData
()
...
...
@@ -101,3 +102,48 @@ colData(ss3_pbmc) <- colData(ss3_pbmc) |>
DataFrame
()
saveRDS
(
ss3_pbmc
,
here
::
here
(
"data"
,
"raw_data"
,
"ss3_pbmc.rds"
))
# CITE-seq data
# Adapted from the Seurat tutorial:
# https://satijalab.org/seurat/articles/multimodal_vignette.html
cbmc_rna
<-
as.sparse
(
read.csv
(
file
=
here
::
here
(
"data"
,
"downloaded_data"
,
"GSE100866_CBMC_8K_13AB_10X-RNA_umi.csv.gz"
),
sep
=
","
,
header
=
TRUE
,
row.names
=
1
)
)
# Discard all but the top 100 most highly expressed mouse genes, and remove the
# 'HUMAN_' from the CITE-seq prefix.
cbmc_rna
<-
CollapseSpeciesExpressionMatrix
(
cbmc_rna
)
# Load in the ADT UMI matrix
cbmc_adt
<-
as.sparse
(
read.csv
(
file
=
here
::
here
(
"data"
,
"downloaded_data"
,
"GSE100866_CBMC_8K_13AB_10X-ADT_umi.csv.gz"
),
sep
=
","
,
header
=
TRUE
,
row.names
=
1
)
)
cbmc
<-
CreateSeuratObject
(
counts
=
cbmc_rna
)
adt_assay
<-
CreateAssayObject
(
counts
=
cbmc_adt
)
cbmc
[[
"ADT"
]]
<-
adt_assay
cbmc
<-
NormalizeData
(
cbmc
)
cbmc
<-
FindVariableFeatures
(
cbmc
)
cbmc
<-
ScaleData
(
cbmc
)
cbmc
<-
RunPCA
(
cbmc
,
verbose
=
FALSE
)
cbmc
<-
FindNeighbors
(
cbmc
,
dims
=
1
:
30
)
cbmc
<-
FindClusters
(
cbmc
,
resolution
=
0.2
,
verbose
=
FALSE
)
cbmc
<-
RunUMAP
(
cbmc
,
dims
=
1
:
30
)
cbmc
<-
RunTSNE
(
cbmc
,
dims
=
1
:
30
)
DimPlot
(
cbmc
,
label
=
TRUE
)
citeseq
<-
as.SingleCellExperiment
(
cbmc
)
saveRDS
(
citeseq
,
here
::
here
(
"data"
,
"raw_data"
,
"citeseq.rds"
))
This diff is collapsed.
Click to expand it.
code/prep-citeseq.R
0 → 100644
+
31
−
0
View file @
257749a2
# This scripts prepares and saves the `citeseq` data.
args
<-
R.utils
::
commandArgs
(
trailingOnly
=
TRUE
,
asValues
=
TRUE
)
suppressMessages
({
library
(
TENxPBMCData
)
library
(
scater
)
library
(
Seurat
)
library
(
scran
)
})
set.seed
(
3112022
)
# Extensive processing of this data occurs in the download_data file, perhaps
# it should be moved here.
citeseq
<-
readRDS
(
args
$
raw_data
)
rowData
(
citeseq
)
<-
DataFrame
(
value
=
rownames
(
citeseq
))
# Filter to the top 2000 genes.
dec_citeseq
<-
modelGeneVarByPoisson
(
citeseq
)
top_citeseq
<-
getTopHVGs
(
dec_citeseq
,
n
=
2000
)
citeseq
<-
citeseq
[
top_citeseq
,
]
# All cluster labels (not annotated).
colLabels
(
citeseq
)
<-
factor
(
citeseq
$
RNA_snn_res.0.2
)
saveRDS
(
citeseq
,
args
$
data
)
This diff is collapsed.
Click to expand it.
config.yaml
+
1
−
0
View file @
257749a2
...
...
@@ -10,6 +10,7 @@ all_data_ids:
-
"
paul"
-
"
zhao"
-
"
ss3_pbmc"
-
"
citeseq"
general_sim_data_ids
:
[
"
zeisel"
,
"
pbmc3k"
,
"
lawlor"
,
"
paul"
]
time_sim_data_ids
:
[
"
pbmc3k"
]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment