#' scDD simulation #' #' Simulate counts using the scDD method. #' #' @param params SCDDParams object containing simulation parameters. #' @param plots logical. whether to generate scDD fold change and validation #' plots. #' @param plot.file File path to save plots as PDF. #' @param verbose logical. Whether to print progress messages #' @param BPPARAM A \code{\link[BiocParallel]{BiocParallelParam}} instance #' giving the parallel back-end to be used. Default is #' \code{\link[BiocParallel]{SerialParam}} which uses a single core. #' @param ... any additional parameter settings to override what is provided in #' \code{params}. #' #' @details #' This function is just a wrapper around \code{\link[scDD]{simulateSet}} that #' takes a \code{\link{SCDDParams}}, runs the simulation then converts the #' output to a \code{\link[SingleCellExperiment]{SingleCellExperiment}} object. #' See \code{\link[scDD]{simulateSet}} for more details about how the simulation #' works. #' #' @return SingleCellExperiment containing simulated counts #' #' @references #' Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. A #' statistical approach for identifying differential distributions in #' single-cell RNA-seq experiments. Genome Biology (2016). #' #' Paper: \url{10.1186/s13059-016-1077-y} #' #' Code: \url{https://github.com/kdkorthauer/scDD} #' #' @examples #' \dontrun{ #' sim <- scDDSimulate() #' } #' @export #' @importFrom BiocParallel SerialParam #' @importFrom SingleCellExperiment SingleCellExperiment scDDSimulate <- function(params = newSCDDParams(), plots = FALSE, plot.file = NULL, verbose = TRUE, BPPARAM = SerialParam(), ...) { checkmate::assertClass(params, "SCDDParams") params <- setParams(params, ...) nCells <- getParam(params, "nCells") if (verbose) {message("Simulating counts with scDD...")} # Restore the default varInflation to NULL varInflation <- getParam(params, "varInflation") if (all(varInflation == 1)) { varInflation <- NULL } if (verbose) { scDD.sim <- scDD::simulateSet(SCdat = getParam(params, "SCdat"), numSamples = nCells, nDE = getParam(params, "nDE"), nDP = getParam(params, "nDP"), nDM = getParam(params, "nDM"), nDB = getParam(params, "nDB"), nEE = getParam(params, "nEE"), nEP = getParam(params, "nEP"), sd.range = getParam(params, "sd.range"), modeFC = getParam(params, "modeFC"), plots = plots, plot.file = plot.file, random.seed = getParam(params, "seed"), varInflation = varInflation, condition = getParam(params, "condition"), param = BPPARAM) } else { suppressMessages( scDD.sim <- scDD::simulateSet(SCdat = getParam(params, "SCdat"), numSamples = nCells, nDE = getParam(params, "nDE"), nDP = getParam(params, "nDP"), nDM = getParam(params, "nDM"), nDB = getParam(params, "nDB"), nEE = getParam(params, "nEE"), nEP = getParam(params, "nEP"), sd.range = getParam(params, "sd.range"), modeFC = getParam(params, "modeFC"), plots = plots, plot.file = plot.file, random.seed = getParam(params, "seed"), varInflation = varInflation, condition = getParam(params, "condition"), param = BPPARAM) ) } counts <- SummarizedExperiment::assays(scDD.sim)$normcounts foldchanges <- SummarizedExperiment::rowData(scDD.sim)$FC de.status <- SummarizedExperiment::rowData(scDD.sim)$Category if (verbose) {message("Creating final dataset...")} cell.names <- paste0("Cell", seq_len(nCells * 2)) gene.names <- paste0("Gene", seq_len(getParam(params, "nGenes"))) rownames(counts) <- gene.names colnames(counts) <- cell.names cells <- data.frame(Cell = cell.names, Condition = rep(1:2, each = nCells)) rownames(cells) <- cell.names features <- data.frame(Gene = gene.names, DEStatus = de.status, FoldChange = foldchanges) rownames(features) <- gene.names sim <- SingleCellExperiment(assays = list(counts = counts), rowData = features, colData = cells, metadata = list(params = params)) if (verbose) {message("Done!")} return(sim) }