#' Compare SingleCellExperiment objects #' #' Combine the data from several SingleCellExperiment objects and produce some #' basic plots comparing them. #' #' @param sces named list of SingleCellExperiment objects to combine and #' compare. #' @param point.size size of points in scatter plots. #' @param point.alpha opacity of points in scatter plots. #' @param fits whether to include fits in scatter plots. #' @param colours vector of colours to use for each dataset. #' #' @details #' The returned list has three items: #' #' \describe{ #' \item{\code{FeatureData}}{Combined feature data from the provided #' SingleCellExperiments.} #' \item{\code{PhenoData}}{Combined pheno data from the provided #' SingleCellExperiments.} #' \item{\code{Plots}}{Comparison plots #' \describe{ #' \item{\code{Means}}{Boxplot of mean distribution.} #' \item{\code{Variances}}{Boxplot of variance distribution.} #' \item{\code{MeanVar}}{Scatter plot with fitted lines showing the #' mean-variance relationship.} #' \item{\code{LibraySizes}}{Boxplot of the library size #' distribution.} #' \item{\code{ZerosGene}}{Boxplot of the percentage of each gene #' that is zero.} #' \item{\code{ZerosCell}}{Boxplot of the percentage of each cell #' that is zero.} #' \item{\code{MeanZeros}}{Scatter plot with fitted lines showing #' the mean-zeros relationship.} #' } #' } #' } #' #' The plots returned by this function are created using #' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you #' might like to consider. The data used to create these plots is also returned #' and should be in the correct format to allow you to create further plots #' using \code{\link[ggplot2]{ggplot}}. #' #' @return List containing the combined datasets and plots. #' @examples #' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20) #' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20) #' comparison <- compareSCEs(list(Splat = sim1, Simple = sim2)) #' names(comparison) #' names(comparison$Plots) #' @importFrom ggplot2 ggplot aes_string geom_point geom_smooth geom_boxplot #' scale_y_continuous scale_y_log10 scale_x_log10 xlab ylab ggtitle #' theme_minimal scale_colour_manual scale_fill_manual #' @importFrom SingleCellExperiment cpm<- #' @export compareSCEs <- function(sces, point.size = 0.1, point.alpha = 0.1, fits = TRUE, colours = NULL) { checkmate::assertList(sces, types = "SingleCellExperiment", any.missing = FALSE, min.len = 1, names = "unique") checkmate::assertNumber(point.size, finite = TRUE) checkmate::assertNumber(point.alpha, lower = 0, upper = 1) checkmate::assertLogical(fits, any.missing = FALSE, len = 1) if (!is.null(colours)) { checkmate::assertCharacter(colours, any.missing = FALSE, len = length(sces)) } else { colours <- scales::hue_pal()(length(sces)) } for (name in names(sces)) { sce <- sces[[name]] rowData(sce)$Dataset <- name colData(sce)$Dataset <- name sce <- scater::calculateQCMetrics(sce) cpm(sce) <- scater::calculateCPM(sce, use_size_factors = FALSE) sce <- addFeatureStats(sce, "counts") sce <- addFeatureStats(sce, "cpm") sce <- addFeatureStats(sce, "cpm", log = TRUE) n.features <- colData(sce)$total_features_by_counts colData(sce)$PctZero <- 100 * (1 - n.features / nrow(sce)) sces[[name]] <- sce } features <- rowData(sces[[1]]) cells <- colData(sces[[1]]) if (length(sces) > 1) { for (name in names(sces)[-1]) { sce <- sces[[name]] features <- rbindMatched(features, rowData(sce)) cells <- rbindMatched(cells, colData(sce)) } } features$Dataset <- factor(features$Dataset, levels = names(sces)) cells$Dataset <- factor(cells$Dataset, levels = names(sces)) features <- data.frame(features) cells <- data.frame(cells) means <- ggplot(features, aes_string(x = "Dataset", y = "MeanLogCPM", colour = "Dataset")) + geom_boxplot() + scale_colour_manual(values = colours) + ylab(expression(paste("Mean ", log[2], "(CPM + 1)"))) + ggtitle("Distribution of mean expression") + theme_minimal() vars <- ggplot(features, aes_string(x = "Dataset", y = "VarLogCPM", colour = "Dataset")) + geom_boxplot() + scale_colour_manual(values = colours) + ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) + ggtitle("Distribution of variance") + theme_minimal() mean.var <- ggplot(features, aes_string(x = "MeanLogCPM", y = "VarLogCPM", colour = "Dataset", fill = "Dataset")) + geom_point(size = point.size, alpha = point.alpha) + scale_colour_manual(values = colours) + scale_fill_manual(values = colours) + xlab(expression(paste("Mean ", log[2], "(CPM + 1)"))) + ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) + ggtitle("Mean-variance relationship") + theme_minimal() libs <- ggplot(cells, aes_string(x = "Dataset", y = "total_counts", colour = "Dataset")) + geom_boxplot() + scale_y_continuous(labels = scales::comma) + scale_colour_manual(values = colours) + ylab("Total counts per cell") + ggtitle("Distribution of library sizes") + theme_minimal() z.gene <- ggplot(features, aes_string(x = "Dataset", y = "pct_dropout_by_counts", colour = "Dataset")) + geom_boxplot() + scale_y_continuous(limits = c(0, 100)) + scale_colour_manual(values = colours) + ylab("Percentage zeros per gene") + ggtitle("Distribution of zeros per gene") + theme_minimal() z.cell <- ggplot(cells, aes_string(x = "Dataset", y = "PctZero", colour = "Dataset")) + geom_boxplot() + scale_y_continuous(limits = c(0, 100)) + scale_colour_manual(values = colours) + ylab("Percentage zeros per cell") + ggtitle("Distribution of zeros per cell") + theme_minimal() mean.zeros <- ggplot(features, aes_string(x = "MeanCounts", y = "pct_dropout_by_counts", colour = "Dataset", fill = "Dataset")) + geom_point(size = point.size, alpha = point.alpha) + scale_x_log10(labels = scales::comma) + scale_colour_manual(values = colours) + scale_fill_manual(values = colours) + xlab("Mean count") + ylab("Percentage zeros") + ggtitle("Mean-zeros relationship") + theme_minimal() if (fits) { mean.var <- mean.var + geom_smooth() mean.zeros <- mean.zeros + geom_smooth() } comparison <- list(FeatureData = features, PhenoData = cells, Plots = list(Means = means, Variances = vars, MeanVar = mean.var, LibrarySizes = libs, ZerosGene = z.gene, ZerosCell = z.cell, MeanZeros = mean.zeros)) return(comparison) } #' Diff SingleCellExperiment objects #' #' Combine the data from several SingleCellExperiment objects and produce some #' basic plots comparing them to a reference. #' #' @param sces named list of SingleCellExperiment objects to combine and #' compare. #' @param ref string giving the name of the SingleCellExperiment to use as the #' reference #' @param point.size size of points in scatter plots. #' @param point.alpha opacity of points in scatter plots. #' @param fits whether to include fits in scatter plots. #' @param colours vector of colours to use for each dataset. #' #' @details #' #' This function aims to look at the differences between a reference #' SingleCellExperiment and one or more others. It requires each #' SingleCellExperiment to have the same dimensions. Properties are compared by #' ranks, for example when comparing the means the values are ordered and the #' differences between the reference and another dataset plotted. A series of #' Q-Q plots are also returned. #' #' The returned list has five items: #' #' \describe{ #' \item{\code{Reference}}{The SingleCellExperiment used as the reference.} #' \item{\code{FeatureData}}{Combined feature data from the provided #' SingleCellExperiments.} #' \item{\code{PhenoData}}{Combined pheno data from the provided #' SingleCellExperiments.} #' \item{\code{Plots}}{Difference plots #' \describe{ #' \item{\code{Means}}{Boxplot of mean differences.} #' \item{\code{Variances}}{Boxplot of variance differences.} #' \item{\code{MeanVar}}{Scatter plot showing the difference from #' the reference variance across expression ranks.} #' \item{\code{LibraySizes}}{Boxplot of the library size #' differences.} #' \item{\code{ZerosGene}}{Boxplot of the differences in the #' percentage of each gene that is zero.} #' \item{\code{ZerosCell}}{Boxplot of the differences in the #' percentage of each cell that is zero.} #' \item{\code{MeanZeros}}{Scatter plot showing the difference from #' the reference percentage of zeros across expression ranks.} #' } #' } #' \item{\code{QQPlots}}{Quantile-Quantile plots #' \describe{ #' \item{\code{Means}}{Q-Q plot of the means.} #' \item{\code{Variances}}{Q-Q plot of the variances.} #' \item{\code{LibrarySizes}}{Q-Q plot of the library sizes.} #' \item{\code{ZerosGene}}{Q-Q plot of the percentage of zeros per #' gene.} #' \item{\code{ZerosCell}}{Q-Q plot of the percentage of zeros per #' cell.} #' } #' } #' } #' #' The plots returned by this function are created using #' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you #' might like to consider. The data used to create these plots is also returned #' and should be in the correct format to allow you to create further plots #' using \code{\link[ggplot2]{ggplot}}. #' #' @return List containing the combined datasets and plots. #' @examples #' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20) #' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20) #' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple") #' names(difference) #' names(difference$Plots) #' @importFrom ggplot2 ggplot aes_string geom_point geom_boxplot xlab ylab #' ggtitle theme_minimal geom_hline geom_abline scale_colour_manual #' scale_fill_manual #' @importFrom SingleCellExperiment cpm<- #' @export diffSCEs <- function(sces, ref, point.size = 0.1, point.alpha = 0.1, fits = TRUE, colours = NULL) { checkmate::assertList(sces, types = "SingleCellExperiment", any.missing = FALSE, min.len = 2, names = "unique") checkmate::assertString(ref) checkmate::assertNumber(point.size, finite = TRUE) checkmate::assertNumber(point.alpha, lower = 0, upper = 1) checkmate::assertLogical(fits, any.missing = FALSE, len = 1) if (!(ref %in% names(sces))) { stop("'ref' must be the name of a SingleCellExperiment in 'sces'") } else { ref.idx <- which(names(sces) == ref) } if (!is.null(colours)) { checkmate::assertCharacter(colours, any.missing = FALSE, len = length(sces) - 1) } else { colours <- scales::hue_pal()(length(sces)) colours <- colours[-ref.idx] } ref.dim <- dim(sces[[ref]]) for (name in names(sces)) { sce <- sces[[name]] if (!identical(dim(sce), ref.dim)) { stop("SCESets must have the same dimensions") } rowData(sce)$Dataset <- name colData(sce)$Dataset <- name sce <- scater::calculateQCMetrics(sce) cpm(sce) <- scater::calculateCPM(sce, use_size_factors = FALSE) sce <- addFeatureStats(sce, "counts") sce <- addFeatureStats(sce, "cpm", log = TRUE) n.features <- colData(sce)$total_features_by_counts colData(sce)$PctZero <- 100 * (1 - n.features / nrow(sce)) rowData(sce)$RankCounts <- rank(rowData(sce)$mean_counts) sces[[name]] <- sce } ref.sce <- sces[[ref]] ref.means <- sort(rowData(ref.sce)$MeanLogCPM) ref.vars <- sort(rowData(ref.sce)$VarLogCPM) ref.libs <- sort(colData(ref.sce)$total_counts) ref.z.gene <- sort(rowData(ref.sce)$pct_dropout_by_counts) ref.z.cell <- sort(colData(ref.sce)$PctZero) ref.rank.ord <- order(rowData(ref.sce)$RankCounts) ref.vars.rank <- rowData(ref.sce)$VarLogCPM[ref.rank.ord] ref.z.gene.rank <- rowData(ref.sce)$pct_dropout_by_counts[ref.rank.ord] for (name in names(sces)) { sce <- sces[[name]] rowData(sce)$RefRankMeanLogCPM <- ref.means[ rank(rowData(sce)$MeanLogCPM)] rowData(sce)$RankDiffMeanLogCPM <- rowData(sce)$MeanLogCPM - rowData(sce)$RefRankMeanLogCPM rowData(sce)$RefRankVarLogCPM <- ref.vars[rank(rowData(sce)$VarLogCPM)] rowData(sce)$RankDiffVarLogCPM <- rowData(sce)$VarLogCPM - rowData(sce)$RefRankVarLogCPM colData(sce)$RefRankLibSize <- ref.libs[rank(colData(sce)$total_counts)] colData(sce)$RankDiffLibSize <- colData(sce)$total_counts - colData(sce)$RefRankLibSize rowData(sce)$RefRankZeros <- ref.z.gene[rank( rowData(sce)$pct_dropout_by_counts)] rowData(sce)$RankDiffZeros <- rowData(sce)$pct_dropout_by_counts - rowData(sce)$RefRankZeros colData(sce)$RefRankZeros <- ref.z.cell[rank( colData(sce)$PctZero)] colData(sce)$RankDiffZeros <- colData(sce)$PctZero - colData(sce)$RefRankZeros rowData(sce)$MeanRankVarDiff <- rowData(sce)$VarLogCPM - ref.vars.rank[rowData(sce)$RankCounts] rowData(sce)$MeanRankZerosDiff <- rowData(sce)$pct_dropout_by_counts - ref.z.gene.rank[rowData(sce)$RankCounts] sces[[name]] <- sce } ref.sce <- sces[[ref]] sces[[ref]] <- NULL features <- rowData(sces[[1]]) cells <- colData(sces[[1]]) if (length(sces) > 1) { for (name in names(sces)[-1]) { sce <- sces[[name]] features <- rbindMatched(features, rowData(sce)) cells <- rbindMatched(cells, colData(sce)) } } features$Dataset <- factor(features$Dataset, levels = names(sces)) cells$Dataset <- factor(cells$Dataset, levels = names(sces)) features <- data.frame(features) cells <- data.frame(cells) means <- ggplot(features, aes_string(x = "Dataset", y = "RankDiffMeanLogCPM", colour = "Dataset")) + geom_hline(yintercept = 0, colour = "red") + geom_boxplot() + scale_colour_manual(values = colours) + ylab(expression(paste("Rank difference mean ", log[2], "(CPM + 1)"))) + ggtitle("Difference in mean expression") + theme_minimal() vars <- ggplot(features, aes_string(x = "Dataset", y = "RankDiffVarLogCPM", colour = "Dataset")) + geom_hline(yintercept = 0, colour = "red") + geom_boxplot() + scale_colour_manual(values = colours) + ylab(expression(paste("Rank difference variance ", log[2], "(CPM + 1)"))) + ggtitle("Difference in variance") + theme_minimal() mean.var <- ggplot(features, aes_string(x = "RankCounts", y = "MeanRankVarDiff", colour = "Dataset", fill = "Dataset")) + geom_hline(yintercept = 0, colour = "red") + geom_point(size = point.size, alpha = point.alpha) + scale_colour_manual(values = colours) + scale_fill_manual(values = colours) + xlab("Expression rank") + ylab(expression(paste("Difference in variance ", log[2], "(CPM + 1)"))) + ggtitle("Difference in mean-variance relationship") + theme_minimal() libs <- ggplot(cells, aes_string(x = "Dataset", y = "RankDiffLibSize", colour = "Dataset")) + geom_hline(yintercept = 0, colour = "red") + geom_boxplot() + scale_colour_manual(values = colours) + ylab(paste("Rank difference libray size")) + ggtitle("Difference in library sizes") + theme_minimal() z.gene <- ggplot(features, aes_string(x = "Dataset", y = "RankDiffZeros", colour = "Dataset")) + geom_hline(yintercept = 0, colour = "red") + geom_boxplot() + scale_colour_manual(values = colours) + ylab(paste("Rank difference percentage zeros")) + ggtitle("Difference in zeros per gene") + theme_minimal() z.cell <- ggplot(cells, aes_string(x = "Dataset", y = "RankDiffZeros", colour = "Dataset")) + geom_hline(yintercept = 0, colour = "red") + geom_boxplot() + scale_colour_manual(values = colours) + ylab(paste("Rank difference percentage zeros")) + ggtitle("Difference in zeros per cell") + theme_minimal() mean.zeros <- ggplot(features, aes_string(x = "RankCounts", y = "MeanRankZerosDiff", colour = "Dataset", fill = "Dataset")) + geom_hline(yintercept = 0, colour = "red") + geom_point(size = point.size, alpha = point.alpha) + scale_colour_manual(values = colours) + scale_fill_manual(values = colours) + xlab("Expression rank") + ylab("Difference in percentage zeros per gene") + ggtitle("Difference in mean-zeros relationship") + theme_minimal() means.qq <- ggplot(features, aes_string(x = "RefRankMeanLogCPM", y = "MeanLogCPM", colour = "Dataset")) + geom_abline(intercept = 0, slope = 1, colour = "red") + geom_point(size = point.size, alpha = point.alpha) + scale_colour_manual(values = colours) + xlab(expression(paste("Reference mean ", log[2], "(CPM + 1)"))) + ylab(expression(paste("Alternative mean ", log[2], "(CPM + 1)"))) + ggtitle("Ranked means") + theme_minimal() vars.qq <- ggplot(features, aes_string(x = "RefRankVarLogCPM", y = "VarLogCPM", colour = "Dataset")) + geom_abline(intercept = 0, slope = 1, colour = "red") + geom_point(size = point.size, alpha = point.alpha) + scale_colour_manual(values = colours) + xlab(expression(paste("Reference variance ", log[2], "(CPM + 1)"))) + ylab(expression(paste("Alternative variance ", log[2], "(CPM + 1)"))) + ggtitle("Ranked variances") + theme_minimal() libs.qq <- ggplot(cells, aes_string(x = "RefRankLibSize", y = "total_counts", colour = "Dataset")) + geom_abline(intercept = 0, slope = 1, colour = "red") + geom_point(size = point.size, alpha = point.alpha) + scale_colour_manual(values = colours) + xlab("Reference library size") + ylab("Alternative library size") + ggtitle("Ranked library sizes") + theme_minimal() z.gene.qq <- ggplot(features, aes_string(x = "RefRankZeros", y = "pct_dropout_by_counts", colour = "Dataset")) + geom_abline(intercept = 0, slope = 1, colour = "red") + geom_point(size = point.size, alpha = point.alpha) + scale_colour_manual(values = colours) + xlab("Reference percentage zeros") + ylab("Alternative percentage zeros") + ggtitle("Ranked percentage zeros per gene") + theme_minimal() z.cell.qq <- ggplot(cells, aes_string(x = "RefRankZeros", y = "PctZero", colour = "Dataset")) + geom_abline(intercept = 0, slope = 1, colour = "red") + geom_point(size = point.size, alpha = point.alpha) + scale_colour_manual(values = colours) + xlab("Reference percentage zeros") + ylab("Alternative percentage zeros") + ggtitle("Ranked percentage zeros per cell") + theme_minimal() if (fits) { mean.var <- mean.var + geom_smooth() mean.zeros <- mean.zeros + geom_smooth() } comparison <- list(Reference = ref.sce, FeatureData = features, PhenoData = cells, Plots = list(Means = means, Variances = vars, MeanVar = mean.var, LibrarySizes = libs, ZerosGene = z.gene, ZerosCell = z.cell, MeanZeros = mean.zeros), QQPlots = list(Means = means.qq, Variances = vars.qq, LibrarySizes = libs.qq, ZerosGene = z.gene.qq, ZerosCell = z.cell.qq)) return(comparison) } #' Make comparison panel #' #' Combine the plots from \code{compareSCEs} into a single panel. #' #' @param comp list returned by \code{\link{compareSCEs}}. #' @param title title for the panel. #' @param labels vector of labels for each of the seven plots. #' #' @return Combined panel plot #' #' @examples #' \dontrun{ #' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20) #' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20) #' comparison <- compareSCEs(list(Splat = sim1, Simple = sim2)) #' panel <- makeCompPanel(comparison) #' } #' #' @importFrom ggplot2 theme element_blank #' @export makeCompPanel <- function(comp, title = "Comparison", labels = c("Means", "Variance", "Mean-variance relationship", "Library size", "Zeros per gene", "Zeros per cell", "Mean-zeros relationship")) { if (!requireNamespace("cowplot", quietly = TRUE)) { stop("The `cowplot` package is required to make panels.") } checkmate::assertList(comp, any.missing = FALSE, len = 3) checkmate::checkString(title) checkmate::checkCharacter(labels, len = 7) plots <- list(p1 = comp$Plots$Means, p2 = comp$Plots$Variances, p3 = comp$Plots$MeanVar, p4 = comp$Plots$LibrarySizes, p5 = comp$Plots$ZerosGene, p6 = comp$Plots$ZerosCell, p7 = comp$Plots$MeanZeros) # Remove titles and legends for (plot in names(plots)) { plots[[plot]] <- plots[[plot]] + theme(legend.position = "none", plot.title = element_blank()) } # Remove x-axis title from some plots for (plot in paste0("p", c(1, 2, 4, 5, 6))) { plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank()) } plots$leg <- cowplot::get_legend(plots$p3 + theme(legend.position = "bottom")) panel <- cowplot::ggdraw() + cowplot::draw_label(title, 0.5, 0.98, fontface = "bold", size = 18) + cowplot::draw_label(labels[1], 0.01, 0.95, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p1, 0.0, 0.74, 0.5, 0.20) + cowplot::draw_label(labels[2], 0.51, 0.95, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p2, 0.5, 0.74, 0.5, 0.20) + cowplot::draw_label(labels[3], 0.01, 0.70, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p3, 0.0, 0.49, 0.5, 0.20) + cowplot::draw_label(labels[4], 0.51, 0.70, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p4, 0.5, 0.49, 0.5, 0.20) + cowplot::draw_label(labels[5], 0.01, 0.45, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p5, 0.0, 0.24, 0.5, 0.20) + cowplot::draw_label(labels[6], 0.51, 0.45, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p6, 0.5, 0.24, 0.5, 0.20) + cowplot::draw_label(labels[7], 0.01, 0.21, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p7, 0.0, 0.00, 0.5, 0.20) + cowplot::draw_plot(plots$leg, 0.5, 0.00, 0.5, 0.20) return(panel) } #' Make difference panel #' #' Combine the plots from \code{diffSCEs} into a single panel. #' #' @param diff list returned by \code{\link{diffSCEs}}. #' @param title title for the panel. #' @param labels vector of labels for each of the seven sections. #' #' @return Combined panel plot #' #' @examples #' \dontrun{ #' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20) #' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20) #' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple") #' panel <- makeDiffPanel(difference) #' } #' #' @importFrom ggplot2 theme element_blank #' @export makeDiffPanel <- function(diff, title = "Difference comparison", labels = c("Means", "Variance", "Library size", "Zeros per cell", "Zeros per gene", "Mean-variance relationship", "Mean-zeros relationship")) { if (!requireNamespace("cowplot", quietly = TRUE)) { stop("The `cowplot` package is required to make panels.") } checkmate::assertList(diff, any.missing = FALSE, len = 5) checkmate::checkString(title) checkmate::checkCharacter(labels, len = 7) plots <- list(p1 = diff$Plots$Means, p2 = diff$QQPlots$Means, p3 = diff$Plots$Variances, p4 = diff$QQPlots$Variances, p5 = diff$Plots$MeanVar, p6 = diff$Plots$LibrarySizes, p7 = diff$QQPlots$LibrarySizes, p8 = diff$Plots$ZerosCell, p9 = diff$QQPlots$ZerosCell, p10 = diff$Plots$ZerosGene, p11 = diff$QQPlots$ZerosGene, p12 = diff$Plots$MeanZeros) # Remove titles and legends for (plot in names(plots)) { plots[[plot]] <- plots[[plot]] + theme(legend.position = "none", plot.title = element_blank()) } # Remove x-axis title from some plots for (plot in paste0("p", c(1, 3, 6, 8, 10))) { plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank()) } plots$leg <- cowplot::get_legend(plots$p5 + theme(legend.position = "bottom")) panel <- cowplot::ggdraw() + cowplot::draw_label(title, 0.5, 0.98, fontface = "bold", size = 18) + cowplot::draw_label(labels[1], 0.0, 0.94, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p1, 0.0, 0.64, 0.18, 0.29) + cowplot::draw_plot(plots$p2, 0.0, 0.32, 0.18, 0.29) + cowplot::draw_label(labels[2], 0.21, 0.94, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p3, 0.21, 0.64, 0.18, 0.29) + cowplot::draw_plot(plots$p4, 0.21, 0.32, 0.18, 0.29) + cowplot::draw_label(labels[6], 0.0, 0.30, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p5, 0.0, 0.0, 0.38, 0.29) + cowplot::draw_label(labels[3], 0.41, 0.94, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p6, 0.41, 0.64, 0.18, 0.29) + cowplot::draw_plot(plots$p7, 0.41, 0.32, 0.18, 0.29) + cowplot::draw_label(labels[4], 0.61, 0.94, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p8, 0.61, 0.64, 0.18, 0.29) + cowplot::draw_plot(plots$p9, 0.61, 0.32, 0.18, 0.29) + cowplot::draw_label(labels[7], 0.41, 0.30, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p12, 0.41, 0.0, 0.38, 0.29) + cowplot::draw_label(labels[5], 0.81, 0.94, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p10, 0.81, 0.64, 0.18, 0.29) + cowplot::draw_plot(plots$p11, 0.81, 0.32, 0.18, 0.29) + cowplot::draw_plot(plots$leg, 0.81, 0.0, 0.2, 0.29) return(panel) } #' Make overall panel #' #' Combine the plots from \code{compSCEs} and \code{diffSCEs} into a #' single panel. #' #' @param comp list returned by \code{\link{compareSCEs}}. #' @param diff list returned by \code{\link{diffSCEs}}. #' @param title title for the panel. #' @param row.labels vector of labels for each of the seven rows. #' #' @return Combined panel plot #' #' @examples #' \dontrun{ #' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20) #' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20) #' comparison <- compSCESets(list(Splat = sim1, Simple = sim2)) #' difference <- diffSCESets(list(Splat = sim1, Simple = sim2), ref = "Simple") #' panel <- makeOverallPanel(comparison, difference) #' } #' #' @importFrom ggplot2 theme element_blank #' @export makeOverallPanel <- function(comp, diff, title = "Overall comparison", row.labels = c("Means", "Variance", "Mean-variance relationship", "Library size", "Zeros per cell", "Zeros per gene", "Mean-zeros relationship")) { if (!requireNamespace("cowplot", quietly = TRUE)) { stop("The `cowplot` package is required to make panels.") } checkmate::assertList(comp, any.missing = FALSE, len = 3) checkmate::assertList(diff, any.missing = FALSE, len = 5) checkmate::checkString(title) checkmate::checkCharacter(row.labels, len = 7) plots <- list(p1 = comp$Plots$Means, p2 = diff$Plots$Means, p3 = diff$QQPlots$Means, p4 = comp$Plots$Variances, p5 = diff$Plots$Variances, p6 = diff$QQPlots$Variances, p7 = comp$Plots$MeanVar, p8 = diff$Plots$MeanVar, p9 = comp$Plots$LibrarySizes, p10 = diff$Plots$LibrarySizes, p11 = diff$QQPlots$LibrarySizes, p12 = comp$Plots$ZerosCell, p13 = diff$Plots$ZerosCell, p14 = diff$QQPlots$ZerosCell, p15 = comp$Plots$ZerosGene, p16 = diff$Plots$ZerosGene, p17 = diff$QQPlots$ZerosGene, p18 = comp$Plots$MeanZeros, p19 = diff$Plots$MeanZeros) # Remove titles and legends for (plot in names(plots)) { plots[[plot]] <- plots[[plot]] + theme(legend.position = "none", plot.title = element_blank()) } # Remove x-axis title from some plots for (plot in paste0("p", c(1, 2, 4, 5, 9, 10, 12, 13, 15, 16))) { plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank()) } plots$leg <- cowplot::get_legend(plots$p7 + theme(legend.position = "bottom")) panel <- cowplot::ggdraw() + cowplot::draw_label(title, 0.5, 0.995, fontface = "bold", size = 18) + cowplot::draw_label(row.labels[1], 0.01, 0.985, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p1, 0.00, 0.86, 0.32, 0.12) + cowplot::draw_plot(plots$p2, 0.34, 0.86, 0.32, 0.12) + cowplot::draw_plot(plots$p3, 0.67, 0.86, 0.32, 0.12) + cowplot::draw_label(row.labels[2], 0.01, 0.845, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p4, 0.00, 0.72, 0.32, 0.12) + cowplot::draw_plot(plots$p5, 0.34, 0.72, 0.32, 0.12) + cowplot::draw_plot(plots$p6, 0.67, 0.72, 0.32, 0.12) + cowplot::draw_label(row.labels[3], 0.01, 0.705, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p7, 0.00, 0.58, 0.49, 0.12) + cowplot::draw_plot(plots$p8, 0.51, 0.58, 0.49, 0.12) + cowplot::draw_label(row.labels[4], 0.01, 0.56, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p9, 0.00, 0.44, 0.32, 0.12) + cowplot::draw_plot(plots$p10, 0.34, 0.44, 0.32, 0.12) + cowplot::draw_plot(plots$p11, 0.67, 0.44, 0.32, 0.12) + cowplot::draw_label(row.labels[5], 0.01, 0.425, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p12, 0.00, 0.30, 0.32, 0.12) + cowplot::draw_plot(plots$p13, 0.34, 0.30, 0.32, 0.12) + cowplot::draw_plot(plots$p14, 0.67, 0.30, 0.32, 0.12) + cowplot::draw_label(row.labels[6], 0.01, 0.285, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p15, 0.00, 0.16, 0.32, 0.12) + cowplot::draw_plot(plots$p16, 0.34, 0.16, 0.32, 0.12) + cowplot::draw_plot(plots$p17, 0.67, 0.16, 0.32, 0.12) + cowplot::draw_label(row.labels[7], 0.01, 0.145, fontface = "bold", hjust = 0, vjust = 0) + cowplot::draw_plot(plots$p18, 0.00, 0.02, 0.49, 0.12) + cowplot::draw_plot(plots$p19, 0.51, 0.02, 0.49, 0.12) + cowplot::draw_plot(plots$leg, 0.00, 0.00, 1.00, 0.02) return(panel) } #' Summarise diffSCESs #' #' Summarise the results of \code{\link{diffSCEs}}. Calculates the Median #' Absolute Deviation (MAD), Mean Absolute Error (MAE) and Root Mean Squared #' Error (RMSE) for the various properties and ranks them. #' #' @param diff Output from \code{\link{diffSCEs}} #' #' @return data.frame with MADs, MAEs, RMSEs, scaled statistics and ranks #' @examples #' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20) #' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20) #' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple") #' summary <- summariseDiff(difference) #' head(summary) #' @export summariseDiff <- function(diff) { datasets <- unique(diff$PhenoData$Dataset) fData.mads <- sapply(datasets, function(dataset) { df <- diff$FeatureData[diff$FeatureData$Dataset == dataset, ] mean <- median(abs(df$RankDiffMeanLogCPM)) var <- median(abs(df$RankDiffVarLogCPM)) zeros <- median(abs(df$RankDiffZeros)) mean.var <- median(abs(df$MeanRankVarDiff)) mean.zeros <- median(abs(df$MeanRankZerosDiff)) return(c(Mean = mean, Variance = var, ZerosGene = zeros, MeanVar = mean.var, MeanZeros = mean.zeros)) }) fData.mads.z <- t(scale(t(fData.mads))) pData.mads <- sapply(datasets, function(dataset) { df <- diff$PhenoData[diff$PhenoData$Dataset == dataset, ] lib.size <- median(abs(df$RankDiffLibSize)) zeros <- median(abs(df$RankDiffZeros)) return(c(LibSize = lib.size, ZerosCell = zeros)) }) pData.mads.z <- t(scale(t(pData.mads))) mads <- data.frame(Dataset = datasets, t(fData.mads), t(pData.mads)) mads.z <- data.frame(Dataset = datasets, t(fData.mads.z), t(pData.mads.z)) fData.ranks <- matrixStats::rowRanks(fData.mads) pData.ranks <- matrixStats::rowRanks(pData.mads) ranks.mads <- data.frame(Dataset = datasets, t(fData.ranks), t(pData.ranks)) colnames(ranks.mads) <- paste0(colnames(mads), "Rank") fData.maes <- sapply(datasets, function(dataset) { df <- diff$FeatureData[diff$FeatureData$Dataset == dataset, ] mean <- mean(abs(df$RankDiffMeanLogCPM)) var <- mean(abs(df$RankDiffVarLogCPM)) zeros <- mean(abs(df$RankDiffZeros)) mean.var <- mean(abs(df$MeanRankVarDiff)) mean.zeros <- mean(abs(df$MeanRankZerosDiff)) return(c(Mean = mean, Variance = var, ZerosGene = zeros, MeanVar = mean.var, MeanZeros = mean.zeros)) }) fData.maes.z <- t(scale(t(fData.maes))) pData.maes <- sapply(datasets, function(dataset) { df <- diff$PhenoData[diff$PhenoData$Dataset == dataset, ] lib.size <- mean(abs(df$RankDiffLibSize)) zeros <- mean(abs(df$RankDiffZeros)) return(c(LibSize = lib.size, ZerosCell = zeros)) }) pData.maes.z <- t(scale(t(pData.maes))) maes <- data.frame(Dataset = datasets, t(fData.maes), t(pData.maes)) maes.z <- data.frame(Dataset = datasets, t(fData.maes.z), t(pData.maes.z)) fData.ranks <- matrixStats::rowRanks(fData.maes) pData.ranks <- matrixStats::rowRanks(pData.maes) ranks.maes <- data.frame(Dataset = datasets, t(fData.ranks), t(pData.ranks)) colnames(ranks.maes) <- paste0(colnames(mads), "Rank") fData.rmse <- sapply(datasets, function(dataset) { df <- diff$FeatureData[diff$FeatureData$Dataset == dataset, ] mean <- sqrt(mean(df$RankDiffMeanLogCPM ^ 2)) var <- sqrt(mean(df$RankDiffVarLogCPM ^ 2)) zeros <- sqrt(mean(df$RankDiffZeros ^ 2)) mean.var <- sqrt(mean(df$MeanRankVarDiff ^ 2)) mean.zeros <- sqrt(mean(df$MeanRankZerosDiff ^ 2)) return(c(Mean = mean, Variance = var, ZerosGene = zeros, MeanVar = mean.var, MeanZeros = mean.zeros)) }) fData.rmse.z <- t(scale(t(fData.rmse))) pData.rmse <- sapply(datasets, function(dataset) { df <- diff$PhenoData[diff$PhenoData$Dataset == dataset, ] lib.size <- sqrt(mean(df$RankDiffLibSize ^ 2)) zeros <- sqrt(mean(df$RankDiffZeros ^ 2)) return(c(LibSize = lib.size, ZerosCell = zeros)) }) pData.rmse.z <- t(scale(t(pData.rmse))) rmse <- data.frame(Dataset = datasets, t(fData.rmse), t(pData.rmse)) rmse.z <- data.frame(Dataset = datasets, t(fData.rmse.z), t(pData.rmse.z)) fData.ranks <- matrixStats::rowRanks(fData.rmse) pData.ranks <- matrixStats::rowRanks(pData.rmse) ranks.rmse <- data.frame(Dataset = datasets, t(fData.ranks), t(pData.ranks)) colnames(ranks.rmse) <- paste0(colnames(rmse), "Rank") mads <- stats::reshape(mads, varying = 2:8, direction = "long", idvar = "Dataset", timevar = "Statistic", times = colnames(mads)[2:8], v.names = "MAD") mads.z <- stats::reshape(mads.z, varying = 2:8, direction = "long", idvar = "Dataset", timevar = "Statistic", times = colnames(mads)[2:8], v.names = "MADScaled") ranks.mads <- stats::reshape(ranks.mads, varying = 2:8, direction = "long", idvar = "Dataset", timevar = "Statistic", times = colnames(ranks.mads)[2:8], v.names = "Rank") maes <- stats::reshape(maes, varying = 2:8, direction = "long", idvar = "Dataset", timevar = "Statistic", times = colnames(maes)[2:8], v.names = "MAE") maes.z <- stats::reshape(maes.z, varying = 2:8, direction = "long", idvar = "Dataset", timevar = "Statistic", times = colnames(mads)[2:8], v.names = "MAEScaled") ranks.maes <- stats::reshape(ranks.maes, varying = 2:8, direction = "long", idvar = "Dataset", timevar = "Statistic", times = colnames(ranks.maes)[2:8], v.names = "Rank") rmse <- stats::reshape(rmse, varying = 2:8, direction = "long", idvar = "Dataset", timevar = "Statistic", times = colnames(mads)[2:8], v.names = "RMSE") rmse.z <- stats::reshape(rmse.z, varying = 2:8, direction = "long", idvar = "Dataset", timevar = "Statistic", times = colnames(mads)[2:8], v.names = "RMSEScaled") ranks.rmse <- stats::reshape(ranks.rmse, varying = 2:8, direction = "long", idvar = "Dataset", timevar = "Statistic", times = colnames(ranks.rmse)[2:8], v.names = "Rank") summary <- data.frame(mads, MADScaled = mads.z$MADScaled, MADRank = ranks.mads$Rank, MAE = maes$MAE, MAEScaled = maes.z$MAEScaled, MAERank = ranks.maes$Rank, RMSE = rmse$RMSE, RMSEScaled = rmse.z$RMSEScaled, RMSERank = ranks.rmse$Rank) row.names(summary) <- NULL return(summary) }