#' Extract information of local and weekly estimates from simulation #' #' #' @param sim An \code{icm} object returned by \link{simulate.seiqhrf}. #' @param market.share between 0 and 1, percentage of local hospital beds in the simulated unit (e.g. state) #' @param icu_percent between 0 and 1, percentage of patients that should go to ICU among the ones that need hospitality #' @param total_population True population size, needed only if simulation size is smaller than the true population size due to computational cost etc. #' #' @return #' \itemize{ #' \item \code{plot:} A \code{ggplot} object, bar charts of count of patients requiring hospitality and ICU respectively #' \item \code{result:} A dataframe #' \itemize{ #' \item \code{week:} week number from input \code{sim}, #' \item \code{hosp:} the number of patients that require hospitality locally, #' \item \code{icu:} the number of patients that require ICU locally. } # #' } #' get_weekly_local <- function(sim, market.share = .4, icu_percent = .1, total_population = NULL){ hosp <- sim$df$h.num if(!is.null(total_population)){ if(total_population < max(sim$df$s.num)) stop("total Population should be larger than simulated size") cat("Scalling w.r.t total population") hosp <- hosp*total_population/max(sim$df$s.num) } if(market.share < 0 || market.share > 1) stop("Market share has to be between 0 and 1") if(icu_percent < 0 || icu_percent > 1) stop("ICU percentage has to be between 0 and 1") hosp[is.na(hosp)] <- 0 hosp_week <- split(hosp, ceiling(seq_along(hosp)/7)) hosp_sum_week <- unlist(lapply(hosp_week, sum)) t_sz <- length(hosp_sum_week) plot_hosp_icu_week <- data.frame(wk = rep(seq_along(hosp_sum_week), 2), hosp_icu = c(hosp_sum_week, hosp_sum_week*icu_percent), group = rep(c("general hopitality", "icu"), each = t_sz)) gg <- ggplot(data=plot_hosp_icu_week, aes(x = wk, y = hosp_icu, fill = group)) + geom_bar(stat="identity") + labs(y="Counts", x = "Week") + scale_x_continuous(breaks = seq(0,t_sz,5), labels= seq(0,t_sz,5)) res <- data.frame(wk = seq_along(hosp_sum_week), hosp = hosp_sum_week, icu = hosp_sum_week*icu_percent) rownames(res) <- c() return(list("plot" = gg, "result" = res)) }