% Generated by roxygen2: do not edit by hand % Please edit documentation in R/scDD-estimate.R \name{scDDEstimate} \alias{scDDEstimate} \alias{scDDEstimate.matrix} \alias{scDDEstimate.SingleCellExperiment} \alias{scDDEstimate.default} \title{Estimate scDD simulation parameters} \usage{ scDDEstimate(counts, params = newSCDDParams(), verbose = TRUE, BPPARAM = SerialParam(), ...) \method{scDDEstimate}{matrix}(counts, params = newSCDDParams(), verbose = TRUE, BPPARAM = SerialParam(), conditions, ...) \method{scDDEstimate}{SingleCellExperiment}(counts, params = newSCDDParams(), verbose = TRUE, BPPARAM = SerialParam(), condition = "condition", ...) \method{scDDEstimate}{default}(counts, params = newSCDDParams(), verbose = TRUE, BPPARAM = SerialParam(), condition, ...) } \arguments{ \item{counts}{either a counts matrix or a SingleCellExperiment object containing count data to estimate parameters from.} \item{params}{SCDDParams object to store estimated values in.} \item{verbose}{logical. Whether to show progress messages.} \item{BPPARAM}{A \code{\link{BiocParallelParam}} instance giving the parallel back-end to be used. Default is \code{\link{SerialParam}} which uses a single core.} \item{...}{further arguments passed to or from other methods.} \item{conditions}{Vector giving the condition that each cell belongs to. Conditions can be 1 or 2.} \item{condition}{String giving the column that represents biological group of interest.} } \value{ SCDDParams object containing the estimated parameters. } \description{ Estimate simulation parameters for the scDD simulation from a real dataset. } \details{ This function applies \code{\link[scDD]{preprocess}} to the counts then uses \code{\link[scDD]{scDD}} to estimate the numbers of each gene type to simulate. The output is then converted to a SCDDParams object. See \code{\link[scDD]{preprocess}} and \code{\link[scDD]{scDD}} for details. } \examples{ if (requireNamespace("scDD", quietly = TRUE)) { library(scater) set.seed(1) sce <- mockSCE(ncells = 20, ngenes = 100) colData(sce)$condition <- sample(1:2, ncol(sce), replace = TRUE) params <- scDDEstimate(sce, condition = "condition") params } }