% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/scDD-estimate.R
\name{scDDEstimate}
\alias{scDDEstimate}
\alias{scDDEstimate.matrix}
\alias{scDDEstimate.SingleCellExperiment}
\alias{scDDEstimate.default}
\title{Estimate scDD simulation parameters}
\usage{
scDDEstimate(counts, params = newSCDDParams(), verbose = TRUE,
  BPPARAM = SerialParam(), ...)

\method{scDDEstimate}{matrix}(counts, params = newSCDDParams(),
  verbose = TRUE, BPPARAM = SerialParam(), conditions, ...)

\method{scDDEstimate}{SingleCellExperiment}(counts,
  params = newSCDDParams(), verbose = TRUE, BPPARAM = SerialParam(),
  condition = "condition", ...)

\method{scDDEstimate}{default}(counts, params = newSCDDParams(),
  verbose = TRUE, BPPARAM = SerialParam(), condition, ...)
}
\arguments{
\item{counts}{either a counts matrix or a SingleCellExperiment object
containing count data to estimate parameters from.}

\item{params}{SCDDParams object to store estimated values in.}

\item{verbose}{logical. Whether to show progress messages.}

\item{BPPARAM}{A \code{\link{BiocParallelParam}} instance giving the parallel
back-end to be used. Default is \code{\link{SerialParam}} which uses a
single core.}

\item{...}{further arguments passed to or from other methods.}

\item{conditions}{Vector giving the condition that each cell belongs to.
Conditions can be 1 or 2.}

\item{condition}{String giving the column that represents biological group of
interest.}
}
\value{
SCDDParams object containing the estimated parameters.
}
\description{
Estimate simulation parameters for the scDD simulation from a real dataset.
}
\details{
This function applies \code{\link[scDD]{preprocess}} to the counts then uses
\code{\link[scDD]{scDD}} to estimate the numbers of each gene type to
simulate. The output is then converted to a SCDDParams object. See
\code{\link[scDD]{preprocess}} and \code{\link[scDD]{scDD}} for details.
}
\examples{
if (requireNamespace("scDD", quietly = TRUE)) {
    library(scater)
    set.seed(1)
    sce <- mockSCE(ncells = 20, ngenes = 100)

    colData(sce)$condition <- sample(1:2, ncol(sce), replace = TRUE)
    params <- scDDEstimate(sce, condition = "condition")
    params
}

}