#' Get times #' #' Function to extract timings and assemble results in a dataframe #' #' @param simulate_results results from `simulte()` function. #' #' @importFrom tidyr pivot_longer #' get_times <- function(simulate_results) { sim <- simulate_results$sim for (s in 1:sim$control$nsims) { if (s == 1) { times <- sim$times[[paste("sim", s, sep = "")]] times <- times %>% mutate(s = s) } else { times <- times %>% bind_rows(sim$times[[paste("sim", s, sep = "")]] %>% mutate(s = s)) } } times <- times %>% mutate(infTime = ifelse(infTime < 0, -5, infTime), expTime = ifelse(expTime < 0, -5, expTime)) %>% mutate(incubation_period = infTime - expTime, illness_duration = recovTime - expTime, illness_duration_hosp = dischTime - expTime, hosp_los = dischTime - hospTime, quarantine_delay = quarTime - infTime, survival_time = fatTime - infTime) %>% select(s, incubation_period, quarantine_delay, illness_duration, illness_duration_hosp, hosp_los, survival_time) %>% pivot_longer(-s, names_to = "period_type", values_to = "duration") %>% mutate(period_type = factor(period_type, levels = c("incubation_period", "quarantine_delay", "illness_duration", "illness_duration_hosp", "hosp_los", "survival_time"), labels = c("Incubation period", "Delay entering isolation", "Illness duration", "Illness duration (hosp)", "Hosp care required duration", "Survival time case fatalities"), ordered = TRUE)) return(times) } #' Plot times #' #' Function to plot Duration frequency distributions. #' #' @param times results from `get_times()` function. #' #' @return ggplot object #' plot_times <- function(times){ times %>% filter(duration <= 30) %>% ggplot(aes(x = duration)) + geom_bar() + facet_grid(period_type ~ ., scales = "free_y") + labs(title = "Duration frequency distributions", subtitle = "Baseline simulation") } #' Plot models #' #' Function to plot individuals models or mutliple models for comparison. #' #' @param simulate_results results from `simulte()` function. #' #' @return ggplot #' #' @import dplyr #' plot_models <- function(sims = baseline_sim, sim_id = 'baseline', comp_remove = 'none', time_lim = 100, h.beds = 40, plot_title = 'ICM plot'){ # Define a standard set of colours to represent compartments comps <- c("s.num", "e.num", "i.num", "q.num", "h.num", "r.num", "f.num") compcols <- c(s.num = "#4477AA", e.num = "#66CCEE", i.num = "#CCBB44", q.num = "#AA3377", h.num = "#EE6677", r.num = "#228833", f.num = "#BBBBBB") complabels <- c(s.num = "Susceptible", e.num = "Infected/asymptomatic", i.num = "Infected/infectious", q.num = "Self-isolated", h.num = "Requires hospitalisation", r.num = "Recovered", f.num = "Case fatality") # Merge models to plot together for(i in (1: length(sim_id))){ if(i == 1){ plot_df <- sims[i*2]$df plot_df <- plot_df %>% mutate(experiment = sim_id[i]) }else{ tmp_df <- sims[i*2]$df tmp_df <- tmp_df %>% mutate(experiment = sim_id[i]) plot_df <- plot_df %>% bind_rows(plot_df, tmp_df) } } plot_df <- plot_df %>% filter(time <= time_lim) %>% pivot_longer(-c(time, experiment), names_to = "compartment", values_to = "count") # Filter compartments comp_plot <- setdiff(comps, comp_remove) plot_df <- plot_df %>% filter(compartment %in% c(comp_plot)) # Plot single model if(length(sim_id) == 1){ plot_df %>% ggplot(aes(x = time, y = count, colour = compartment)) + #scale_y_continuous(trans='log2') + geom_line(size = 1.5, alpha = 0.8) + geom_hline(aes(yintercept = h.beds, linetype = "Hospital beds"), size = 1, color = "#EE6677", alpha = 0.5) + scale_colour_manual(values = compcols, labels = complabels) + labs(title = plot_title, x = "Days since beginning of epidemic", y = "Prevalence (persons)") + theme_bw() }else( plot_df %>% ggplot(aes(x = time, y = count, colour = compartment)) + #scale_y_continuous(trans='log2') + facet_grid(experiment ~ .) + geom_line(size = 1.5, alpha = 0.8) + geom_hline(aes(yintercept = h.beds, linetype = "Hospital beds"), size = 1, color = "#EE6677", alpha = 0.5) + scale_colour_manual(values = compcols, labels = complabels) + labs(title = plot_title, x = "Days since beginning of epidemic", y = "Prevalence (persons)") + theme_bw() ) }