% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllClasses.R \docType{class} \name{SplatParams} \alias{SplatParams} \alias{SplatParams-class} \title{The SplatParams class} \description{ S4 class that holds parameters for the Splatter simulation. } \section{Parameters}{ The Splatter simulation requires the following parameters: \describe{ \item{\code{nGenes}}{The number of genes to simulate.} \item{\code{nCells}}{The number of cells to simulate.} \item{\code{[nGroups]}}{The number of groups or paths to simulate.} \item{\code{[groupCells]}}{Vector giving the number of cells in each simulation group/path.} \item{\code{[seed]}}{Seed to use for generating random numbers.} \item{\emph{Mean parameters}}{ \describe{ \item{\code{mean.shape}}{Shape parameter for the mean gamma distribution.} \item{\code{mean.rate}}{Rate parameter for the mean gamma distribution.} } } \item{\emph{Library size parameters}}{ \describe{ \item{\code{lib.loc}}{Location (meanlog) parameter for the library size log-normal distribution.} \item{\code{lib.scale}}{Scale (sdlog) parameter for the library size log-normal distribution.} } } \item{\emph{Expression outlier parameters}}{ \describe{ \item{\code{out.prob}}{Probability that a gene is an expression outlier.} \item{\code{out.facLoc}}{Location (meanlog) parameter for the expression outlier factor log-normal distribution.} \item{\code{out.facScale}}{Scale (sdlog) parameter for the expression outlier factor log-normal distribution.} } } \item{\emph{Differential expression parameters}}{ \describe{ \item{\code{[de.prob]}}{Probability that a gene is differentially expressed in a group. Can be a vector.} \item{\code{[de.loProb]}}{Probability that a differentially expressed gene is down-regulated. Can be a vector.} \item{\code{[de.facLoc]}}{Location (meanlog) parameter for the differential expression factor log-normal distribution. Can be a vector.} \item{\code{[de.facScale]}}{Scale (sdlog) parameter for the differential expression factor log-normal distribution. Can be a vector.} } } \item{\emph{Biological Coefficient of Variation parameters}}{ \describe{ \item{\code{bcv.common}}{Underlying common dispersion across all genes.} \item{\code{bcv.df}}{Degrees of Freedom for the BCV inverse chi-squared distribution.} } } \item{\emph{Dropout parameters}}{ \describe{ \item{\code{dropout.present}}{Logical. Whether to simulate dropout.} \item{\code{dropout.mid}}{Midpoint parameter for the dropout logistic function.} \item{\code{dropout.shape}}{Shape parameter for the dropout logistic function.} } } \item{\emph{Differentiation path parameters}}{ \describe{ \item{\code{[path.from]}}{Vector giving the originating point of each path. This allows path structure such as a cell type which differentiates into an intermediate cell type that then differentiates into two mature cell types. A path structure of this form would have a "from" parameter of c(0, 1, 1) (where 0 is the origin). If no vector is given all paths will start at the origin.} \item{\code{[path.length]}}{Vector giving the number of steps to simulate along each path. If a single value is given it will be applied to all paths.} \item{\code{[path.skew]}}{Vector giving the skew of each path. Values closer to 1 will give more cells towards the starting population, values closer to 0 will give more cells towards the final population. If a single value is given it will be applied to all paths.} \item{\code{[path.nonlinearProb]}}{Probability that a gene follows a non-linear path along the differentiation path. This allows more complex gene patterns such as a gene being equally expressed at the beginning an end of a path but lowly expressed in the middle.} \item{\code{[path.sigmaFac]}}{Sigma factor for non-linear gene paths. A higher value will result in more extreme non-linear variations along a path.} } } } The parameters not shown in brackets can be estimated from real data using \code{\link{splatEstimate}}. For details of the Splatter simulation see \code{\link{splatSimulate}}. }