#' Get data by time #' #' Function to extract timings and assemble results in a dataframe #' #' @param simulate_results results from `simulte()` function. #' #' @return dataframe with sim.n, period type, and duration #' #' @importFrom tidyr pivot_longer #' @importFrom dplyr mutate #' @importFrom dplyr "%>%" #' @importFrom dplyr bind_rows #' @importFrom dplyr select #' @importFrom dplyr filter #' @export get_times <- function(simulate_results) { sim <- simulate_results$sim for (s in 1:sim$control$nsims) { if (s == 1) { times <- sim$times[[paste("sim", s, sep = "")]] times <- times %>% mutate(s = s) } else { times <- times %>% bind_rows(sim$times[[paste("sim", s, sep = "")]] %>% mutate(s = s)) } } times <- times %>% mutate(infTime = ifelse(infTime < 0, -5, infTime), expTime = ifelse(expTime < 0, -5, expTime)) %>% mutate(incubation_period = infTime - expTime, illness_duration = recovTime - expTime, illness_duration_hosp = dischTime - expTime, hosp_los = dischTime - hospTime, quarantine_delay = quarTime - infTime, survival_time = fatTime - infTime) %>% select(s, incubation_period, quarantine_delay, illness_duration, illness_duration_hosp, hosp_los, survival_time) %>% pivot_longer(-s, names_to = "period_type", values_to = "duration") %>% mutate(period_type = factor(period_type, levels = c("incubation_period", "quarantine_delay", "illness_duration", "illness_duration_hosp", "hosp_los", "survival_time"), labels = c("Incubation period", "Delay entering isolation", "Illness duration", "Illness duration (hosp)", "Hosp care required duration", "Survival time case fatalities"), ordered = TRUE)) return(times) } #' Plot times #' #' Function to plot Duration frequency distributions. #' #' @param times results from `get_times()` function. #' #' @return ggplot2 object #' @import ggplot2 #' @export plot_times <- function(times){ times %>% filter(duration <= 30) %>% ggplot(aes(x = duration)) + geom_bar() + facet_grid(period_type ~ ., scales = "free_y") + labs(title = "Duration frequency distributions", subtitle = "Baseline simulation") } #' Plot models #' #' Function to plot individuals models or mutliple models for comparison. #' #' @param sims Single or list of sims to plot #' @param sim_id String or list of strings to name each facet #' @param comp_remove Compartments to remove. Suggest c(s.num, r.num) #' @param time_lim Number of steps (days) to plot. #' @param trans Y-axis transformation (e.g. log2, log10). Default = none. #' @param known Dataframe with known compartment numbers to plot alongside #' projections #' @param start_date Date for day 0. Default: ymd("2020-03-21"), #' @param x_axis Title for x-axis. Default: 'Days since beginning of epidemic' #' @param plot_title Title for whole plot. Default: 'ICM plot' #' #' @return ggplot2 object #' #' @import dplyr #' @importFrom tidyr pivot_longer #' #' @export plot_models <- function(sims = baseline_sim, sim_id = "baseline", comp_remove = "none", time_lim = 100, trans = 'na', known = NULL, start_date = ymd("2020-03-21"), x_axis = 'Days since beginning of epidemic', plot_title = 'ICM plot'){ # Define a standard set of colours to represent compartments comps <- c("s.num", "e.num", "i.num", "q.num", "h.num", "r.num", "f.num") compcols <- c(s.num = "#4477AA", e.num = "#66CCEE", i.num = "#CCBB44", q.num = "#AA3377", h.num = "#EE6677", r.num = "#228833", f.num = "#BBBBBB") complabels <- c(s.num = "S: Susceptible", e.num = "E: Asymptomatic", i.num = "I: Infected", q.num = "Q: Self-isolated", h.num = "H: Hospitalized", r.num = "R: Recovered", f.num = "F: Case Fatalities") # Merge models to plot together for (i in (1: length(sim_id))) { if (i == 1) { plot_df <- sims[i*2]$df plot_df <- plot_df %>% mutate(experiment = sim_id[i]) } else{ tmp_df <- sims[i*2]$df tmp_df <- tmp_df %>% mutate(experiment = sim_id[i]) plot_df <- plot_df %>% bind_rows(plot_df, tmp_df) } } plot_df <- plot_df %>% filter(time <= time_lim) %>% pivot_longer(-c(time, experiment), names_to = "compartment", values_to = "count") # Filter compartments comp_plot <- setdiff(comps, comp_remove) plot_df <- plot_df %>% filter(compartment %in% c(comp_plot)) plot_df$sim <- 'sim' plot_df$Date <- start_date + plot_df$time plot_df$time <- NULL # Add known data if(is.data.frame(known)){ plot_df <- rbind(plot_df, known) } reo_exp <- function(x) { factor(x, levels = sim_id)} # Plot single model if(trans == "na"){ if(length(sim_id) == 1){ plot_df %>% ggplot(aes(x = Date, y = count+1, colour = compartment, linetype = sim)) + geom_line(size = 1.5, alpha = 0.8) + scale_x_date(date_breaks = "1 week", date_labels = "%m-%d") + scale_colour_manual(values = compcols, labels = complabels) + labs(title = plot_title, x = x_axis, y = "Prevalence") + theme_bw() + theme(axis.text.x = element_text(angle = 90)) } else ( plot_df %>% ggplot(aes(x = Date, y = count, colour = compartment, linetype = sim)) + facet_grid(reo_exp(experiment) ~ .) + scale_x_date(date_breaks = "1 week", date_labels = "%m-%d") + geom_line(size = 1.5, alpha = 0.8) + scale_colour_manual(values = compcols, labels = complabels) + labs(title = plot_title, x = x_axis, y = "Prevalence") + theme_bw() + theme(axis.text.x = element_text(angle = 90)) ) }else{ if(length(sim_id) == 1){ plot_df %>% ggplot(aes(x = Date, y = count+1, colour = compartment, linetype = sim)) + scale_y_continuous(trans = trans) + scale_x_date(date_breaks = "1 week", date_labels = "%m-%d") + geom_line(size = 1.5, alpha = 0.8) + scale_colour_manual(values = compcols, labels = complabels) + labs(title = plot_title, x = x_axis, y = "Prevalence") + theme_bw() + theme(axis.text.x = element_text(angle = 90)) } else ( plot_df %>% ggplot(aes(x = Date, y = count+1, colour = compartment, linetype = sim)) + facet_grid(reo_exp(experiment) ~ .) + scale_y_continuous(trans = trans) + scale_x_date(date_breaks = "1 week", date_labels = "%m-%d") + geom_line(size = 1.5, alpha = 0.8) + scale_colour_manual(values = compcols, labels = complabels) + labs(title = plot_title, x = x_axis, y = "Prevalence") + theme_bw() + theme(axis.text.x = element_text(angle = 90)) ) } }