#' Logistic function #' #' Implementation of the logistic function #' #' @param x value to apply the function to. #' @param x0 midpoint parameter. Gives the centre of the function. #' @param k shape parameter. Gives the slope of the function. #' #' @return Value of logistic function with given parameters logistic <- function(x, x0, k) { 1 / (1 + exp(-k * (x - x0))) } #' Bind rows (matched) #' #' Bind the rows of two data frames, keeping only the columns that are common #' to both. #' #' @param df1 first data.frame to bind. #' @param df2 second data.frame to bind. #' #' @return data.frame containing rows from \code{df1} and \code{df2} but only #' common columns. rbindMatched <- function(df1, df2) { common.names <- intersect(colnames(df1), colnames(df2)) if (length(common.names) < 2) { stop("There must be at least two columns in common") } combined <- rbind(df1[, common.names], df2[, common.names]) return(combined) } #' Bring items forward #' #' Move selected items to the start of a list. #' #' @param ll list to adjust item order. #' @param items vector of items to bring to the front. Any not in the list will #' be ignored. #' #' @return list with selected items first bringItemsForward <- function(ll, items) { checkmate::check_list(ll, min.len = 1, names = "unique") checkmate::check_character(items, any.missing = FALSE, min.len = 1, unique = TRUE) items <- items[items %in% names(ll)] if (length(items) > 0) { ll.front <- ll[items] ll.back <- ll[!(names(ll) %in% items)] ll <- c(ll.front, ll.back) } return(ll) } #' Winsorize vector #' #' Set outliers in a numeric vector to a specified percentile. #' #' @param x Numeric vector to winsorize #' @param q Percentile to set from each end #' #' @return Winsorized numeric vector winsorize <- function(x, q) { checkmate::check_numeric(x, any.missing = FALSE) checkmate::check_number(q, lower = 0, upper = 1) lohi <- stats::quantile(x, c(q, 1 - q), na.rm = TRUE) if (diff(lohi) < 0) { lohi <- rev(lohi) } x[!is.na(x) & x < lohi[1]] <- lohi[1] x[!is.na(x) & x > lohi[2]] <- lohi[2] return(x) } #' Calculate coefficient of variation #' #' Implementation of the coefficient of variation #' #' @param x vector of values. #' #' @return Value of coefficient of variation for vector #' @importFrom stats sd co.var <- function(x) { sd(x)/mean(x) } utils::globalVariables(c("ex_gff", "ex_means", "ex_pairs", "ex_snps", "gene_id", "perc", "pval_nominal",))