compareSCESets <- function(sces) { checkmate::assertList(sces, types = "SCESet", any.missing = FALSE, min.len = 1, names = "unique") for (name in names(sces)) { sce <- sces[[name]] fData(sce)$Dataset <- name pData(sce)$Dataset <- name sce <- scater::calculateQCMetrics(sce) cpm(sce) <- edgeR::cpm(counts(sce)) sce <- addFeatureStats(sce, "counts") sce <- addFeatureStats(sce, "cpm") sce <- addFeatureStats(sce, "cpm", log = TRUE) sces[[name]] <- sce } fData.all <- fData(sces[[1]]) fData.all$Dataset <- names(sces)[[1]] pData.all <- pData(sces[[1]]) pData.all$Dataset <- names(sces)[[1]] if (length(sces) > 1) { for (name in names(sces)[-1]) { fData.all <- rbindMatched(fData.all, fData(sce)) pData.all <- rbindMatched(pData.all, pData(sce)) } } means <- ggplot(fData.all, aes(x = Dataset, y = mean_log_cpm, colour = Dataset)) + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) + ylab(expression(paste("Mean ", log[2], "(CPM + 1)"))) + ggtitle("Distribution of mean expression") + theme_minimal() + theme(legend.position = "none") vars <- ggplot(fData.all, aes(x = Dataset, y = var_cpm, colour = Dataset)) + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) + scale_y_log10(labels = scales::comma) + ylab("CPM Variance") + ggtitle("Distribution of variance") + theme_minimal() mean.var <- ggplot(fData.all, aes(x = mean_log_cpm, y = var_log_cpm, colour = Dataset, fill = Dataset)) + geom_point() + geom_smooth() + xlab(expression(paste("Mean ", log[2], "(CPM + 1)"))) + ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) + ggtitle("Mean-variance relationship") + theme_minimal() libs <- ggplot(pData.all, aes(x = Dataset, y = total_counts, colour = Dataset)) + geom_boxplot() + scale_y_continuous(labels = scales::comma) + ylab("Total counts per cell") + ggtitle("Distribution of library sizes") + theme_minimal() z.gene <- ggplot(fData.all, aes(x = Dataset, y = pct_dropout, colour = Dataset)) + geom_boxplot() + scale_y_continuous(limits = c(0, 100)) + ylab("Percentage zeros per gene") + ggtitle("Distribution of zeros per gene") + theme_minimal() z.cell <- ggplot(pData.all, aes(x = Dataset, y = pct_dropout, colour = Dataset)) + geom_boxplot() + scale_y_continuous(limits = c(0, 100)) + ylab("Percentage zeros per cell") + ggtitle("Distribution of zeros per cell") + theme_minimal() comparison <- list(FeatureData = fData.all, PhenoData = pData.all, Plots = list(Means = means, Variances = vars, MeanVar = mean.var, LibrarySizes = libs, ZerosGene = z.gene, ZerosCell = z.cell)) return(comparison) } rbindMatched <- function(df1, df2) { common.names <- intersect(colnames(df1), colnames(df2)) combined <- rbind(df1[, common.names], df2[, common.names]) return(combined) } addFeatureStats <- function(sce, value = c("counts", "cpm", "tpm", "fpkm"), log = FALSE, offset = 1, no.zeros = FALSE) { value <- match.arg(value) switch(value, counts = { values = scater::counts(sce) }, cpm = { values = scater::cpm(sce) }, tpm = { values = scater::tpm(sce) }, fpkm = { values = scater::fpkm(sce) } ) suffix = value if (no.zeros) { values[values == 0] <- NA suffix = paste0(suffix, "_no0") } if (log) { values = log2(values + offset) suffix = paste0("log_", suffix) } mean.str <- paste0("mean_", suffix) var.str <- paste0("var_", suffix) cv.str <- paste0("cv_", suffix) med.str <- paste0("med_", suffix) mad.str <- paste0("mad_", suffix) Biobase::fData(sce)[, mean.str] <- rowMeans(values, na.rm = TRUE) Biobase::fData(sce)[, var.str] <- matrixStats::rowVars(values, na.rm = TRUE) Biobase::fData(sce)[, cv.str] <- sqrt(Biobase::fData(sce)[, var.str]) / Biobase::fData(sce)[, mean.str] Biobase::fData(sce)[, med.str] <- matrixStats::rowMedians(values, na.rm = TRUE) Biobase::fData(sce)[, mad.str] <- matrixStats::rowMads(values, na.rm = TRUE) return(sce) }