Summarise the results of diffSCEs. Calculates the Median Absolute Deviation (MAD), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for the various properties and ranks them.

summariseDiff(diff)

Arguments

diff

Output from diffSCEs

Value

data.frame with MADs, MAEs, RMSEs, scaled statistics and ranks

Examples

sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#> Getting parameters...
#> Creating simulation object...
#> Simulating library sizes...
#> Simulating gene means...
#> Simulating BCV...
#> Simulating counts...
#> Simulating dropout (if needed)...
#> Done!
sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#> Simulating means...
#> Simulating counts...
#> Creating final dataset...
difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#> Note that the names of some metrics have changed, see 'Renamed metrics' in ?calculateQCMetrics. #> Old names are currently maintained for back-compatibility, but may be removed in future releases.
#> Note that the names of some metrics have changed, see 'Renamed metrics' in ?calculateQCMetrics. #> Old names are currently maintained for back-compatibility, but may be removed in future releases.
summary <- summariseDiff(difference) head(summary)
#> Dataset Statistic MAD MADScaled MADRank MAE MAEScaled #> 1 Splat Mean 2.91420 NaN 1 2.699822 NaN #> 2 Splat Variance 11.87313 NaN 1 10.433146 NaN #> 3 Splat ZerosGene 40.00000 NaN 1 45.545000 NaN #> 4 Splat MeanVar 11.35143 NaN 1 12.185829 NaN #> 5 Splat MeanZeros 45.00000 NaN 1 45.065000 NaN #> 6 Splat LibSize 59524.50000 NaN 1 62164.900000 NaN #> MAERank RMSE RMSEScaled RMSERank #> 1 1 3.240761 NaN 1 #> 2 1 13.125369 NaN 1 #> 3 1 49.070103 NaN 1 #> 4 1 15.258433 NaN 1 #> 5 1 54.676549 NaN 1 #> 6 1 63270.772188 NaN 1